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Chapter 6
Diffusive transport

A. Encounter-based models of absorption

In the case of the Fokker-Planck equation for single-particle diffusion in a bounded
domain Ω (see Sect. 2.4), the most general classical boundary condition is the Robin
condition D∇p(x, t) ·n+κ0 p(x, t) = 0 for all x ∈ ∂Ω , where κ0 is a positive reac-
tivity constant, and n is the outward unit normal at a point on the boundary ∂Ω . The
Dirichlet and Neumann boundary conditions are recovered in the limits κ0→∞ and
κ0 = 0, respectively. However, implementing these boundary conditions at the level
of the SDE is non-trivial. In the case of a totally reflecting boundary, the underlying
SDE is modified by including an impulsive kick term that keeps the particle within
Ω . This term can be written as the differential of the boundary local time, which is
a Brownian functional that determines the amount of contact time between particle
and boundary [53, 43, 44, 58, 36, 57]. The modified SDE is known as the Skorokhod
equation. Probabilistic versions of the Robin boundary condition can also be con-
structed using the local time [39]. One of the assumptions of the Robin boundary
condition is that the surface reactivity is a constant. However, various surface-based
reactions are better modeled in terms of a reactivity that is a function of the lo-
cal time [4, 35]. That is, the surface may need to be progressively activated by
repeated encounters with a diffusing particle, or an initially highly reactive surface
may become less active due to multiple interactions with the particle (passivation).
Recently, a theoretical framework for analyzing a more general class of partially
absorbing boundary conditions for diffusion processes has been developed using a
so-called encounter-based approach [40, 41, 11, 13]. The latter can also be applied
to diffusion with stochastic resetting [14, 15, 5], anomalous diffusion [18, 19], and
active particles [16, 17, 20]
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4 6 Diffusive transport

A.1 Totally reflecting boundary at x = 0

In order to introduce the encounter-based approach we consider the example of a
single Brownian particle on the half-line [0,∞) with a partially absorbing bound-
ary at x = 0. First suppose that the boundary is totally reflecting. Let L(t) be the
boundary local time, which is a Brownian functional of the form (see Sect. 8.6)

L(t) = lim
ε→0+

D
ε

∫ t

0
1(0,ε)(X(s))ds, (A.1)

where 1 is the indicator function. (The factor of D means that L j(t) has units of
length.) It can be proven that j(t) exists and is a nondecreasing, continuous function
of t [43, 44]. The SDE for X(t)∈ [0,∞) is given by the so-called Skorokhod equation
for reflecting Brownian motion,

dX(t) =
√

2DdW (t)+dL(t), dL(t) = Dδ (X(t))dt, (A.2)

with W (t) a Brownian motion. The differential dL(t) represents an impulsive kick
applied to the particle whenever it hits x = 0. We now show that the correspondingh
FP equation satisfies the standard Neumann boundary condition at x = 0. First, we
introducethe stochastic density (empirical measure)

ρ(x, t) = δ (X(t)− x). (A.3)

Consider an arbitrary smooth test function f (x), and set

F(t) = f (X(t)) =
∫

∞

0
ρ(x, t) f (x)dx. (A.4)

Using Ito’s lemma to determine the differential dF(t), we have[∫
∞

0
f (x)

∂ρ(x, t)
∂ t

dx
]

dt =
[

f ′(X(t))dL j(t)+D f ′′(X(t)dt +
√

2D f ′(X(t))dW (t)
]

≡ dF(t). (A.5)

Since dL(t) = Dδ (X(t))dt, it follows that∫
∞

0
f (x)

∂ρ(x, t)
∂ t

=
∫

∞

0
ρ(x, t)

[
Dδ (x) f ′(0)+D f ′′(x)+

√
2D f ′(x)ξ (t)

]
dx. (A.6)

We have formally set dW (t) = ξ (t)dt where ξ is a white noise term such that

〈ξ (t)〉= 0, 〈ξ (t)ξ (t ′)〉= δ (t− t ′). (A.7)

Integrating by parts the terms on the right-hand of equation (A.6) and noting that
the terms involving f ′(0) cancel, we have



6 Diffusive transport 5∫
∞

0
f (x)

∂ρ(x, t)
∂ t

dx =
∫

∞

0
f (x)

(
−
√

2D∂xρ(x, t)ξ (t)+D∂xxρ(x, t)
)

dx

− f (0)
(√

2Dρ(0, t)ξ (t)−D∂xρ(0, t)
)
. (A.8)

Since f (x) is arbitrary, we obtain the following SPDE (in the weak sense):

∂ρ(x, t)
∂ t

=−
√

2D
∂ρ(x, t)

∂x
ξ (t)+D

∂ 2ρ(x, t)
∂x2 −δ (x)J (0, t), (A.9a)

with

J (x, t)≡
√

2Dρ(x, t)ξ (t)−D
∂ρ(x, t)

∂x
. (A.9b)

Finally, averaging with respect to the white noise and setting p(x, t) = 〈ρ(x, t)〉
yields the diffusion equation on the half-line with a totally reflecting boundary at
x = 0:

∂ p(x, t)
∂ t

= D
∂ 2ρ(x, t)

∂x2 , D
∂ρ(0, t)

∂x
= 0. (A.10)

A.2 Partially absorbing boundary at x = 0

So far we have focused on totally reflecting boundary conditions, which can be
handled using Skorokhod SDEs and the differential of the local time. However,
the introduction of the local time also allows us to incorporate a much more general
class of boundary condition via the encounter-based approach to diffusion-mediated
surface absorption [40, 41, 11, 13]. The encounter-based approach assumes that a
diffusion process is killed when its local time L(t) at x = 0, as defined in equation
(A.1), exceeds a randomly distributed threshold ̂̀. In other words, the particle is
absorbed at x = 0 at the stopping time

T = inf{t > 0 : L(t)> ̂̀}, P[̂̀> `]≡Ψ(`). (A.11)

Since L(t) is a nondecreasing process, the condition t < T is equivalent to the con-
dition L(t)< ̂̀. Hence, the corresponding single-particle SDE is

dX(t) = [
√

2DdW (t)+dL(t)]1L(t)<̂̀, (A.12)

where 1L(t)<̂̀≡Θ(̂̀−L(t)) with Θ(x) a Heaviside function. Following along simi-
lar lines to a reflecting boundary, we introduce the single-particle empirical measure

µ(x, ̂̀, t) = δ (x−X(t))1L(t)<̂̀. (A.13)
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Let f (x) be a bounded smooth test function and set

F(̂̀, t) = f (X(t))1L(t)<̂̀. (A.14)

Using Ito’s lemma and the definition of the local time, we have

dF(̂̀, t) = [D f ′′(X(t))dt +
√

2D f ′(X(t))dW (t)+D f ′(X(t))δ (X(t))dt
]

1L(t)<̂̀
−D f (0)δ (X(t))δ (L(t)− ̂̀). (A.15)

It follows that[∫
∞

0
f (x)

∂ µ(x, ̂̀, t)
∂ t

dx
]

dt

=
∫

∞

0
µ(x, ̂̀, t)[D f ′′(x)dt +

√
2D f ′(x)dW (t)+Dδ (x) f ′(0)

]
dx

−D f (0)δ (X(t))δ (L(t)− ̂̀). (A.16)

Integrating by parts and using the arbitrariness of f yields an SPDE for µ:

∂ µ(x, ̂̀, t)
∂ t

= D
∂ 2µ(x, ̂̀, t)

∂x2 +
√

2D
∂ µ(x, ̂̀, t)

∂x
ξ (t), x > 0 (A.17a)

and

D
∂ µ(0, ̂̀, t)

∂x
=
√

2Dξ (t)µ(0, ̂̀, t)+Dδ (X(t))δ (L(t)− ̂̀) (A.17b)

The latter equation follows from equating the sum of terms multiplying f (0) to zero.
In order to derive a generalized FP equation we need to take expectations with

respect to both the white noise process and the random threshold. Recall that these
are denoted by 〈·〉 and E[·], respectively. Note, in particular, that

E
[

1L(t)<̂̀
]
=Ψ(L(t)), E

[
δ (L(t)− ̂̀)]= ψ(L(t)) :=−Ψ

′(L(t)). (A.18)

Introducing the pair of densities

pΨ (x, t) = E[〈µ(x, ̂̀, t)〉] =〈δ (x−X(t))E[1L(t)<̂̀]
〉
=

〈
δ (x−X(t)Ψ(L(t))

〉
,

(A.19a)

ν
ψ(x, t) =

〈
δ (x−X(t))E[δ (L(t)− ̂̀)]〉=

〈
δ (x−X(t)ψ(L(t))

〉
, (A.19b)

and taking expectations of equations (A.17) gives
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∂ pΨ (x, t)
∂ t

= D
∂ 2 pΨ (x, t)

∂x2 , x > 0, D
∂ pΨ (x, t)

∂x

∣∣∣∣
x=0

= Dν
ψ(0, t). (A.20)

For a general local time threshold distribution Ψ , we do not have a closed equa-
tion for the marginal density pΨ (x, t). However, in the particular case of the ex-
ponential distribution Ψ(`) = e−κ0`/D, we have ψ(`) = κ0Ψ(`)/D and equations
(A.20) reduce to the classical Robin BVP with reactivity κ0:

∂ p(x, t)
∂ t

= D
∂ 2 p(x, t)

∂x2 , x > 0, (A.21a)

D
∂ p(0, t)

∂x

∣∣∣∣
x=0

= κ0 p(0, t). (A.21b)

(We have set pΨ = p for Ψ(`) = e−κ0`/D.) Within the context of the encounter-based
formalism, we now make the crucial observation that the solution of the Robin BVP
is equivalent to the Laplace transform of the so-called local time propagator with
respect to `:

p(x, t) =
∫

∞

0
e−z`P(x, `, t)d`= P(x,z, t), z = κ0/D, (A.22)

where P(x, `, t) is known as the local time propagator and can be defined according
to [40, 41, 11, 13]

P(x, `, t) :=
〈

δ (X(t)− x)δ (L(t)− `)

〉
, (A.23)

Assuming that the Laplace transform P(x,z, t), can be inverted with respect to z, the
solution of equation (A.20) is obtained from equation (A.20a):

P(x,z,t)

BVP (Robin)

P(x,l,t)
Ψ(l)

pΨ(x,t)

Ψ(l) = exponential

inverse LT

~

generalized

propagator

Fig. 6.1: Diagram illustrating the encounter-based framework for diffusion in a domain with a
partially absorbing target. The solution of the BVP in the case of a constant absorption rate κ0
generates the Laplace transform P̃(x,z, t) of the local time propagator P(x, `, t). The inverse LT
determines the marginal probability density pΨ (x, t) according to equation (A.24).
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pΨ (x, t) =
∫

∞

0
Ψ(`)P(x, `, t)d`=

∫
∞

0
Ψ(`)LT−1P̃(x,z, t)d`. (A.24)

One way to implement a non-exponential law is to consider an `-dependent reactiv-
ity κ(`) such that

Ψ(`) = exp(−D−1
∫ `

0
κ(`′)d`′). (A.25)

Since the probability of absorption now depends on how much time the particle
spends in a neighborhood of the boundary, as specified by the local time, it follows
that the stochastic process has memory. That is, absorption process itself is non-
Markovian. The general probabilistic framework is summarized in Fig. 6.1. One of
the challenges in implementing the encounter-based method in higher spatial di-
mensions is that the solutions of the classical Robin tends to have a non-trivial para-
metric dependence on the Laplace variable z, which makes it difficult to calculate
the inverse transform analytically.

A.3 Partially absorbing traps

The encounter-based approach to single particle absorption has also been developed
within the context of heterogeneous media, where one or more subregions of a do-
main act as partially absorbing traps [11, 13]. A classical example occurs in models
of axonal transport of cargo to synaptic targets, see Sect. 7.1. A simpler example
is shown in Fig. 6.2 for a single absorbing trap in the interval [−R,R]. A Brown-
ian particle can freely enter and exit the trap but is only absorbed within the trap
when its occupation time exceeds some random threshold. The occupation time is a
Brownian functional defined according to [57]

A(t) =
∫ t

0
1(−R,R)(X(τ))dτ =

∫ t

0

(∫ R

−R
δ (x−X(τ))dx

)
dτ. (A.26)

A(t) specifies the amount of time the particle spends within [−R,R] over the time
interval [0, t]. The stopping time condition for absorption is

T = inf{t > 0 : A(t)> â}, (A.27)

where â is a random variable with probability distribution Ψ(a) = P[â > a]. Hence,
the corresponding single-particle SDE is

dX(t) =
√

2DdW (t)1A(t)<â. (A.28)

Following along analogous lines to an absorbing boundary, we introduce the
single-particle empirical measure

µ(x, â, t) = δ (x−X(t))1A(t)<â, (A.29)
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x = Tx = -R

absorbing

non-absorbing non-absorbing

Fig. 6.2: One-dimensional diffusion with a partially absorbing trap in the interval [−R,R].

and set F(â, t) = f (X(t))1A(t)<â for a test function f (x) in R. Using Itô’s lemma
and the definition of the occupation time, we have

dF(â, t) =
[

D f ′′(X(t))dt +
√

2D f ′(X(t))dW (t)
]

1A(t)<â

−δ (A(t)− â)
∫ R

−R
δ (X(t)− y) f (y)dy. (A.30)

It follows that∫
∞

−∞

f (x)
∂ µ(x, â, t)

∂ t
dx =

∫
∞

−∞

µ(x, â, t)
[

D f ′′(x)dt +
√

2D f ′(X(t))dW (t)
]

dx

−δ (A(t)− â)
∫ R

−R
δ (X(t)− y) f (y)dy. (A.31)

Integrating by parts and using the arbitrariness of f yields an SPDE for µ:

∂ µ(x, â, t)
∂ t

= D
∂ 2µ(x, â, t)

∂x2 +
√

2D
∂ µ(x, â, t)

∂x
ξ (t)−ν(x, â, t), (A.32a)

with
ν(x, â, t) = δ (A(t)− â)δ (X(t)− x)1(−R,R)(x). (A.32b)

Note that ν vanishes outside the trap. Finally, averaging with respect to the white
noise process and the random occupation time threshold yields

∂ pΨ (x, t)
∂ t

= D
∂ 2 pΨ (x, t)

∂x2 −ν
ψ(x, t)1(−R,R)(x), (A.33)

with

pΨ (x, t) = E[〈µ(x, â, t)〉] = 〈δ (x−X(t)Ψ(A(t))〉, (A.34a)

ν
ψ(x, t) =

〈
δ (x−X(t))δ (A(t)− â)

〉
=

〈
ψ(A(t))δ (x−X(t)

〉
. (A.34b)

The subsequent solution strategy is analogous to the case of an absorbing bound-
ary [11, 13]. That is, for an exponential distribution Ψ(a) = e−κ0a we recover the
classical inhomogeneous diffusion equation
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∂ p(x, t)
∂ t

= D
∂ 2 p(x, t)

∂x2 , x ∈ (−∞,−R)∪ (R,∞), (A.35a)

∂q(x, t)
∂ t

= D
∂ 2q(x, t)

∂x2 −κ0q(x, t), x ∈ (−R,R), (A.35b)

together with the matching conditions

p(±R, t) = q(±R, t), ∂x p(±R, t) = ∂xq(±R, t). (A.35c)

(We have denoted the solution within the trap by the function q(x, t).) The final step
is to identify the solution p and q as the Laplace transforms of the corresponding
propagators

P(x,a, t) =
〈

δ (x−X(t)δ (a−A(t)
〉
, x ∈ (−∞,−R)∪ (R,∞), (A.36a)

Q(x,a, t) = 〈δ (x−X(t)δ (a−A(t)〉, x ∈ (−R,R). (A.36b)
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B. Sticky reflecting Brownian motion

The notion of sticky reflecting Brownian motion (BM) dates back to work by Feller
in 1952, who considered various boundary conditions for the diffusion equation in
[0,∞) that are consistent with stochastic processes behaving like standard Brownian
motion in (0,∞) [34]. Ito and McKean [43] subsequently showed how to construct
sample paths of sticky reflecting BM using a random time change that slowed down
reflected paths so that the total time spent at the origin x = 0 has positive Lebesgue
measure. The latter is specified by the stickiness parameter. In this section we briefly
describe the Ito and McKean construction and then consider the more recent formu-
lation of sticky BM based on the inclusion of a strongly localized attractive potential
close to the boundary at x = 0 [9].

B.1 Slowed down reflecting BM in [0,∞)

Let Y (t) be a reflecting BM, that is, Y (t) =
√

2D|W (t)|, where W (t) is a standard
Wiener process and D is a constant diffusivity. That is,

〈W (t)〉= 0, 〈W (t)W (t ′)〉= min(t, t ′). (B.1)

Following supplementary Sect. 6A, define the local time at the origin according to
[43, 58, 57]

`(t;Y ) = lim
ε→0

D
ε

∫ t

0
I[0,ε](Y (τ))dτ, (B.2)

where IΣ (x) = 1 if x ∈ Σ and is zero otherwise. (It is often convenient to include
the factor of D in the definition of the local time, which means that `(t) has units of
length.) It can be proven that `(t) exists and is a positive, non-decreasing function
of t. The corresponding SDE for Y (t) is the so-called Skorokhod equation

dY (t) =
√

2DdW (t)+d`(t;Y ). (B.3)

(Note that ε , Y (t) and `(t) have units of length.) Formally speaking d`(t;Y ) =
δ (Y (t)), which means that each time the particle hits the boundary it is given an
impulsive kick back into the domain x > 0. Introduce the additive continuous in-
creasing function

T (t) = t +ν`(t;Y )/D, (B.4)

where ν is a fixed positive constant with units of length. Note that dT/dt = 1 except
at times where a trajectory contacts the origin. The reflected BM is slowed down at
the origin by constructing the new stochastic process [43]

Ŷ (t) = Y (T−1(t)). (B.5)
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The amount of time spent at the boundary x = 0 can now be characterized in terms
of the occupation time at the origin, as outlined in Ref. [48]. The occupation time is
defined as

A(t;Ŷ ) :=
∫ t

0
I0(Ŷ (s))ds =

∫ t

0
I0(Y (T−1(s))ds. (B.6)

Performing the change of variable for each sample path s = T (τ) gives

A(t;Ŷ ) =
∫ T−1(t)

0
I0(Y (τ))dT (τ) (B.7)

=
∫ T−1(t)

0
I0(Y (τ))dτ +

ν

D

∫ T−1(t)

0
I0(Y (τ))d`(τ;Y ).

The first integral on the right-hand side is simply the occupation time of reflected
BM at a single point x = 0 over the time interval [0,T−1(t)] and is identically zero.
On the other hand, the second integral concentrates the integral to all points at which
I0(Y (τ)) = 1 so that A(t) = ν`(T−1(t);Y )/D. We thus obtain the result

A(t;Ŷ ) =
ν

D
`(t;Ŷ ). (B.8)

Clearly the amount of time the Brownian particle is stuck at the origin depends on
the stickiness parameter ν . Eqs. (B.3) and (B.8) correspond to the SDE for sticky
reflecting BM Ŷ (t)1.

B.2 Reflecting BM with a strong localized potential near the origin

We now turn to a more recent formulation of sticky BM that is based on re-
flecting BM in R+ with a strongly localized attractive potential energy function
in a neighborhood of the origin, as illustrated in Fig. 6.3. More specifically, let
Uε(x) ∈ C2(R+) represent a family of potentials parameterized by ε , ε > 0, with
the following properties [9]:

(i) Uε(x) ≈ 0 for x ≥ ε . In particular, Uε(x), ∂xUε(x), ∂xxUε(x) ≤ O(ε) for x ≥ ε .
This assumption means that outside the boundary layer (0,ε), the force acting on
the particle is negligible and it simply diffuses.

(ii) Within the boundary layer (0,ε) the function Uε(x) takes the form of an attractive
potential well that becomes deeper and narrower as ε → 0. The MFPT to escape
from the boundary layer is approximately εe∆U where ∆U is the height of the
potential barrier.

(iii) There exists a parameter ν such that

1 One technical point is that there are no strong solutions for sticky BM Ŷ (t), meaning that not every
realization of the Wiener process is mapped to a path of Ŷ (t). However, there does exist a weak
solution in the sense that the probability density of sample paths (solution of the corresponding FP
equation) is unique [?].
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x = 0 x =
 
ε

D

re
fl
e

c
ti
n

g
boundary

   layer

U 
ε

Fig. 6.3: Boundary layer construction near x = 0 for sticky BM. Within the boundary layer (0,ε)
there is a strongly attracting potential well, whereas the potential is approximately flat for x≥ ε .

lim
ε→0

∫
ε

0
e−Uε (x)/kBT dx = ν . (B.9)

This condition is the source of stickiness at the origin with ν ultimately being
identified with the stickiness parameter. Using steepest descents, it can be shown
that √

2πkBT lim
ε→0

e−Uε (x0)/kBT√
∂xxUε(x0)

= ν , (B.10)

where x0 is the location of the minimum of Uε(x) in (0,ε). Assuming that
∂xxUε(x0)≈Uε(x0)/ε2, it follows that |Uε(x0)| ∼ | logε| and the left-hand side
is O(1). We also see that the MFPT is proportional to ν so that increasing ν

makes the boundary more sticky.

An example of a family of potentials satisfying the above three properties is the
Morse potential [9]

Uε(x) =U
(

1− e−(x−x0(ε))/ξ (ε)
)2
−U , (B.11)

with x0 = O(ε2), ξ = O(ε2) and U defined implicitly as the solution to the equation

ξ eU/kBT
√

πkBT/U = ν . (B.12)

The latter is chosen so that Eq. (B.9) holds.
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For any ε > 0, the position X(t) of the particle evolves according to the SDE

dX(t) =−γ
−1

∂xUε(X(t))dt +
√

2DdW (t), (B.13)

with a reflecting boundary at the origin. (More precisely, the stochastic variable
should be written as Xε(t) since the solution will depend on ε . We drop the subscript
for notational simplicity.) The friction coefficient γ satisfies the Einstein relation
γD = kBT . Let ρ(x, t) denote the probability density of the stochastic variable X(t).
The associated FP equation is given by

∂ρ

∂ t
= D

∂ 2ρ

∂x2 + γ
−1 ∂

∂x
[∂xUε(x)ρ], (B.14)

with D∂ρ(0, t)+ γ−1∂xU (ε)(0)ρ(0, t) = 0.
As shown in Ref. [9], one can use matched asymptotics to derive an effective

FP equation in the limit ε → 0 that recovers the sticky boundary condition first
introduced by Feller [34]. Let p(x, t) denote the leading order term in an asymptotic
expansion of the outer solution in the region x ≥ ε , which evolves according to the
standard diffusion equation

∂ p(x, t)
∂ t

= D
∂ 2 p(x, t)

∂x2 , x≥ ε. (B.15)

Similarly let q(x, t) denote the corresponding term of the inner solution with

∂q(x, t)
∂ t

= γ
−1 ∂

∂x
[∂xUε(x)q(x, t)]+D

∂ 2q(x, t)
∂x2 , (B.16)

for x ∈ (0,ε), together with the reflecting boundary condition

D∂xq(0, t)+ γ
−1

∂xUε(0)q(0, t) = 0. (B.17)

Introducing the stretched coordinate X = x/ε and keeping only the leading order
terms gives

0 = γ
−1 ∂

∂X
[∂XUε(εX)q(εX , t)]+D

∂ 2q(εX , t)
∂X2 , (B.18)

for X ∈ (0,1), with D∂X q(0, t)+ γ−1∂XUε(0)q(0, t) = 0. The solution for q is

q(εX , t) = N (t)e−Uε (εX)/kBT , X ≤ 1, (B.19)

with the time-dependent amplitude N (t) determined by matching the inner solution
q(εX , t) with the outer solution p(x, t) at x = ε and X = 1.

Since the perturbation is not singular, matching can be performed at a single
point, which is equivalent to imposing the continuity condition p(ε, t) = q(ε, t).
Using the fact that e−Uε (ε)/kBT ∼ 1 and p(ε, t) ∼ p(0, t), we obtain the leading or-
der condition N (t) = p(0, t). A second condition on N (t) is obtained from the
requirement that the total probability is conserved,
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d
∂ t

(∫
ε

0
q(x, t)dx+

∫
∞

ε

p(x, t)dx
)
= 0. (B.20)

Moving the time derivatives inside the integrals and using the diffusion equation for
p yields

0 =

(∫
ε

0

dN (t)
dt

e−Uε (x)/kBT dx+D
∫

∞

ε

∂ 2 p(x, t)
∂x2 dx

)
=

dN (t)
dt

∫
ε

0
e−Uε (x)/kBT dx−D∂x p(ε, t). (B.21)

Finally, taking the limit ε→ 0 using Eq. (B.9) and setting N (t) = p(0, t) yields the
boundary condition

ν
∂ p(0, t)

∂ t
= D

∂ p(0, t)
∂x

. (B.22)

From the diffusion equation for p, we see that this is equivalent to the boundary
condition first introduced by Feller [34], namely,

ν
∂ 2 p(0, t)

∂x2 =
∂ p(0, t)

∂x
. (B.23)

Formally speaking, the full probability density ρ(x, t) can then be written in the
form

ρ(x, t) = lim
ε→0

p(x, t)e−Uε (x)/kBT = p(x, t)(1+νδ (x)). (B.24)

This follows from the assumed properties of Uε(x). It will be convenient for our
subsequent analysis to rewrite the full FP equation for sticky BM in the form

∂ p(x, t)
∂ t

= D
∂ 2 p(x, t)

∂x2 , x ∈ (0,∞), (B.25a)

q(t) = ν p(0, t),
dq(t)

dt
= D

∂ p(0, t)
∂x

. (B.25b)

This makes explicit the notion that the probability of being at the origin has finite
Lebesgue measure and consequently a nonzero occupation time. Note that if ν = 0
then q(t) = 0 and we recover reflecting BM.

6.3 Numerical method for simulating sticky BM

The derivation of the FP equation for sticky BM, see Eqs. (B.25a) and (B.25b),
was based on taking the limit ε → 0 of reflecting BM in the presence of a local
attractive potential well of width ε . However, as highlighted in Ref. [9], simulating
the corresponding SDE (B.13) for small ε in order to generate sample paths of
sticky BM is not particularly efficient, since a very small step size is needed in order
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Fig. 6.4: Sample paths Y (t) of the sticky random walk algorithm presented in Ref. [9] for different
values of the stickiness parameter: (a) ν = 0.1; (b) ν = 1; (c) ν = 10; (d) ν = 20. Other param-
eter values are x0 = 0.2 and h = 0.01. We also plot the accumulation time A0(t) at the origin,
which is shown as a piecewise smooth (red) curve. Short-lived excursions away from the origin
are smoothed out. However, the time intervals between such excursions are indicated by the (blue)
staircase).

to achieve reasonable accuracy. Here we briefly describe a more effective numerical
scheme for simulating sticky BM that was also introduced in Ref. [9]. This is based
on constructing a continuous time Markov chain that represents a sticky random
walk. We use this algorithm to illustrate the fact that the occupation time at the
origin, see Eq. (B.8), has a non-zero Lebesgue measure.

Suppose that R+ is discretized by setting x = nh for positive integers n with h
the lattice spacing. The sticky random walk on the lattice can be simulated exactly
using a simple Monte Carlo algorithm. Let N(t) denote the lattice site occupied by
the random walker at time t. The position is updated as follows [9]:

(I) If N(t)≥ 1 then the particle jumps to one of the neighboring lattice sites N(t)±1
with equal probability. The waiting time for the jump is exponentially distributed
with mean waiting time h2/2.

(II) If N(t) = 0 then the particle jumps to the right with unit probability. The waiting
time for the jump is again exponentially distributed but the mean waiting time is now
h2/2+νh, where ν is the stickiness parameter.
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Example realizations of the sticky random walk are shown in Fig. 6.4. The plots
are generated using the MatLab code presented in appendix A of Ref. [9], which
has been slightly modified in order to display the occupation time A0(t) at the ori-
gin. As expected the occupation time tends to increase with ν . Finally, note that the
potential construction can be combined with the encounter-based method of supple-
mentary Sect. 6A to develop a probabilistic formulation of partial absorption at a
sticky boundary [22]
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C. Semi-permeable membranes

Diffusion through semipermeable barriers or membranes has a number of applica-
tions in cell biology. One of the best-known examples is a lipid bilayer that regu-
lates the flow of proteins and ions between different subcellular compartments and
the exchange of molecules with the extracellular environment, see Sect. 6.1. Semi-
permeable barriers also occur at the multicellular level, as exemplified by electrical
or chemical gap junctions, see Sect.6.7. At the macroscopic level, multi-particle dif-
fusion across a semi-permeable membrane is modeled by taking the Fickian flux
across the membrane to be continuous and to be proportional to the difference in
concentrations on either side of the barrier; the constant of proportionality identi-
fied as the permeability. For example, suppose that M denotes a closed bounded
domain M ⊂ Rd with a smooth concave boundary ∂M separating the two open
domainsM and its complementMc, see Fig. 6.5. The boundary acts as a semiper-
meable interface with ∂M+ (∂M−) denoting the side approached from outside
(inside) M, see Fig. 6.5. Let u(x, t) be the concentration of particles at x at time
t. Then u(x, t) is the weak solution of the diffusion equation with a permeable or
leather boundary condition on ∂M

∂u(x, t)
∂ t

= D∇
2u(x, t), x ∈M∪Mc, (C.1a)

J(y±, t) = κ0[u(y−, t)−u(y+, t)], y± ∈ ∂M±, (C.1b)

where J(x, t) = −D∇u(x, t) · n is the particle flux, n is the unit normal directed
out ofM, D is the diffusivity and κ0 is the (constant) permeability. Eqs. (C.1) are a
special case of the Kedem-Katchalsky (KK) equations [45, 46, 47], which also allow
for discontinuities in the diffusivity and chemical potential across the interface. The
macroscopic KK equations can be derived by considering a thin membrane and
using statistical thermodynamics. More simply, Eqs. (C.1) arise from treating the
interface as a thin layer of slow diffusion D = O(h), where h is the width of the
layer, and taking the limit h→ 0 [2]. Although the KK equations were originally
developed within the context of the transport of non-electrolytes through biological
membranes, they are now used to describe all types of membranes, both biological
and artificial. (See the recent collection of articles in Ref. [63].) One application
of artificial membranes is reverse osmosis for water purification and for extracting
energy from variations in salinity [54, 74].

Advances in single-particle tracking and imaging methods are beginning to pro-
vide details of single particle trajectories that cannot be captured by macroscopic
models. This has motivated a number of stochastic models at the single-particle
level. One approach is to consider random walks on lattices in which semipermeable
barriers are represented by local defects [71, 50, 64, 49]. An alternative approach
is to use stochastic differential equations (SDEs). These generate sample paths of a
Brownian particle that are distributed according to a probability density satisfying a
corresponding FP equation. However, incorporating the microscopic analog of the
permeable boundary condition (C.1b) is non-trivial. If ∂M were a totally reflecting
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Fig. 6.5: Diffusion through a closed semipermeable membrane in Rd .

(Neumann) or partially reflecting (Robin) boundary, then Brownian motion (BM)
confined to M would need to be supplemented by an additional impulsive force
each time the particle contacted the boundary (prior to possible absorption). Mathe-
matically speaking, this can be implemented by introducing the boundary local time
along the lines of Sect. 6A.The latter determines the amount of time that a Brownian
particle spends in the neighborhood of points on the boundary. A rigorous proba-
bilistic formulation of one-dimensional BM in the presence of a semipermeable bar-
rier is much more recent, and is based on so-called snapping out BM [51, 52, 12, 21].
Snapping out BM sews together successive rounds of partially reflecting BM that are
restricted to either x < 0 or x > 0 with a semipermeable barrier at x = 0. Suppose
that the particle starts in the domain x > 0. It realizes positively reflected BM until
its local time exceeds an exponential random variable with parameter κ0. It then
immediately resumes either negatively or positively reflected BM with equal prob-
ability, and so on. (Note that SDEs in the form of underdamped Langevin equations
have been used to develop efficient computational schemes for finding solutions to
the FP equation in the presence of one or more semipermeable interfaces [72, 33].
This is distinct from snapping out BM, which is an exact single-particle realization
of diffusion through an interface in the overdamped limit.)

There are a number of reasons why it is advantageous to formulate diffusion
through a semi-permeable barrier in terms of snapping out BM. First, it provides
a method for simulating Brownian motion in the presence of such a barrier [76].
Second, rather than solving a Fokker-Planck of the form (C.2), we can express the
(weak) solution for p in terms of the solution q of partially reflected BM. Third, it
provides a probabilistic framework for developing more general probabilistic mod-
els of diffusion through semi-permeable membranes based on encounter-baed mod-
els of absorption, see supplementary material 6A.
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Fig. 6.6: Snapping out BM. (a) Single-particle diffusing across a semipermeable interface at x = 0.
(b) Decomposition of snapping out BM into the random switching between two partially reflected
BMs in the domains Ω±.

B.1. Snapping out BM in R

Consider an overdamped Brownian particle diffusing in a 1D domain with a semiper-
meable barrier or interface at x = 0. Let p(x, t) denote the probability density of the
particle at position x at time t. The corresponding FP equation takes the form

∂ p(x, t)
∂ t

=−∂J(x, t)
∂x

, J(x, t) =−D
∂ p(x, t)

∂x
, x 6= 0, t > 0, (C.2a)

with the following pair of boundary conditions at the interface:

J(0±, t) = J (t) :=
κ0

2
[p(0−, t)−σ p(0+, t)], (C.2b)

where κ0 is a constant permeability and σ , 0 ≤ σ < 1, represents a directional
asymmetry that can be interpreted as a step discontinuity in a chemical potential
[45, 46, 47, 33]. This asymmetry tends to enhance the concentration to the right
of the interface. (If σ > 1 then we would have an interface with permeability κ0σ

and bias 1/σ to the left. A symmetric interface corresponds to the case σ = 1.) The
arbitrary factor of 1/2 on the right-hand side of Eq. (C.2c) is motivated by the cor-
responding probabilistic interpretation of snapping out BM, see Sect. III. Finally,
D is the diffusivity, γ is the friction coefficient, and the two quantities are related
according to the Einstein relation Dγ = kBT . (In the following we set the Boltz-
mann constant kB = 1.) For simplicity, we take the diffusive medium to be spatially
homogeneous. However, the domains (−∞,0−] and [0+,∞) could have different
diffusivities, for example. That is, D = D− for x < 0 and D = D+ for x > 0 with
D− 6= D+.

The dynamics of snapping out BM is formulated in terms of a sequence of killed
reflected BMs in either Ω− = (−∞,0−] or Ω+ = [0+,∞) [51, 52, 12, 21], see Fig.
6.6 Let Tn denote the time of the nth killing (with T0 = 0). Immediately after the
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killing event, the position of the particle is taken to be

X(T +
n ) = lim

ε→0+
[−Ynε +(1−Yn)ε] , (C.3)

where Yn is an independent Bernoulli random variable with P[Yn = 1] = P[Yn = 0] =
1/2. Suppose that X(t)∈Ω+ for t ∈ (Tn,Tn+1), that is, X(T +

n ) = 0+, and introduce
the boundary local time (see supplementary material 6A and Sect. 8.6)

L+
n (t) = lim

ε→0+

D
ε

∫ t

0
Θ(ε−X(τ +Tn))dτ. (C.4)

The boundary local time L+
n (t) tracks the amount of the time the particle is in contact

with the right-hand side of the interface over the time interval [Tn, t]. The SDE for
X(t), t ∈ (Tn,Tn+1), is given by the Skorokhod equation for reflected BM in the
half-line Ω+:

dX(t) =
√

2DdW (t)+dLn(t) (C.5)

for t ∈ (Tn,Tn+1), where W (t) is a Wiener process with W (0) = 0. Formally speak-
ing,

dL+
n (t) = lim

ε→0+
δ (X(t +Tn)− ε)dt, (C.6)

so that each time the particle hits the interface it is given a positive impulsive kick
back into the domain. The time of the next killing is then determined by the condi-
tion

Tn+1 = Tn + inf
{

t > 0, L+
n (t)≥ ̂̀} , (C.7)

where ̂̀is an independent randomly generated local time threshold with

P[̂̀> `] = e−κ0`/D, `≥ 0. (C.8)

On the other hand, if X(T +
n ) = 0− then the next round of reflected BM takes place

in the domain Ω−. The corresponding SDE is

dX(t) =
√

2DdW (t)−dL−n (t), (C.9)

with t ∈ (Tn,Tn+1), X(t) ∈Ω−,

L−n (t) = lim
ε→0+

D
ε

∫ t

0
Θ(ε +X(τ +Tn))dτ, (C.10)

and

Tn+1 = Tn + inf
{

t > Tn : L−n (t)≥ ̂̀} . (C.11)
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We now use renewal theory to sketch a proof that the distribution of sample paths
in 1D snapping out BM is given by the solution of the corresponding FP Eq. (C.2).
For an alternative proof in 1D see Ref. [51] and for the generalization to higher
spatial dimensions see Ref. [21]. Let p(x, t) denote the probability density of snap-
ping out BM for p(x,0) = δ (x− x0) and x0 > 0. Let q(x, t|x0) be the corresponding
solution for partially reflected BM in Ω+. (It is straightforward to generalize the
analysis to the case of a general distribution of initial conditions g(x0) that spans
both sides of the interface.) The densities p are related to q according to the last
renewal equation [12, 21]

p(x, t) = q(x, t|x0)+
κ0

2

∫ t

0
q(x,τ|0)[p(0+, t− τ)+ p(0−, t− τ)]dτ, x > 0,

(C.12a)

p(x, t) =
κ0

2

∫ t

0
q(|x|,τ|0)[p(0+, t− τ)+ p(0−, t− τ)]dτ, x < 0. (C.12b)

The first term on the right-hand side of Eq. (C.12a) represents all sample trajectories
that have never been absorbed by the barrier at x = 0± up to time t. The correspond-
ing integrand represents all trajectories that were last absorbed (stopped) at time
t− τ in either the positively or negatively reflected BM state and then switched to
the appropriate sign to reach x with probability 1/2. Since the particle is not ab-
sorbed over the interval (t − τ, t], the probability of reaching x ∈ Ω+ starting at
x = 0± is q(x,τ|0). The probability that the last stopping event occurred in the in-
terval (t−τ, t−τ +dτ) irrespective of previous events is κ0dτ . A similar argument
holds for Eq. (C.12b).

The renewal Eqs. (C.12) can be used to express p in terms of q using Laplace
transforms. First,

p̃(x,s) = q̃(x,s|x0)+
κ0

2
q̃(x,s|0)[p̃(0+,s)+ p̃(0−,s)], x > 0, (C.13a)

p̃(x,s) =
κ0

2
q̃(|x|,s|0)[p̃(0+,s)+ p̃(0−,s)], x < 0. (C.13b)

(Note that equation (C.13) is equivalent to the resolvent operator equation (8) of
[51].) Setting x = 0± in equation (C.13), summing the results and rearranging shows
that

p̃(0+,s)+ p̃(0−,s) =
q̃(0,s|x0)

1−κ0q̃(0,s|0)
. (C.14)

Substituting back into equations (C.13) yields the explicit solution

p̃(x,s) = q̃(x,s|x0)+
κ0q̃(0,s|x0)/2
1−κ0q̃(0,s|0)

q̃(x,s|0), x > 0, (C.15a)

p̃(x,s) =
κ0q̃(0,s|x0)/2
1−κ0q̃(0,s|0)

q̃(|x|,s|0), x < 0. (C.15b)
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Calculating the full solution p(x, t) thus reduces to the problem of finding the cor-
responding solution q(x, t|x0) of partially reflected BM in Ω+. As we have shown
elsewhere, this then establishes that p(x, t) satisfies the interfacial conditions (C.2c).

The next step is to evaluate q̃(|x|,s|x0). Laplace transforming the FP equation for
q(x, t|x0) for. x > 0 yields the BVP

D
∂ 2q̃(x,s|x0)

∂x2 − sq̃(x,s|x0) =−δ (x− x0), x > 0, (C.16a)

D
∂ q̃(0,s|x0)

∂x
= κ0q̃(0,s|x0). (C.16b)

That is, we can identify q̃(x,s|x0) with the Robin Green’s function for the modified
Helmholtz equation on [0,∞). Writing the general solution for x < x0 as

q̃(x,s|x0) = Ae−
√

s/Dx +Be
√

s/Dx (C.17)

and substituting into the Robin boundary condition shows that

q̃(x,s|x0) = B
(

e
√

s/Dx +

√
sD−κ0√
sD+κ0

e−
√

s/Dx
)
. (C.18)

Using the fact that the bounded solution for x > x0 is proportional to e−
√

s/Dx, im-
posing continuity of q̃(x,s|x0) across x0 and matching the discontinuity in the first
derivative yields the solution

q̃(x,s|x0) =
1

2
√

sD

(
e−
√

s/D|x−x0|+

√
sD−κ0√
sD+κ0

e−
√

s/D(x+x0)

)
. (C.19)

Note, in particular, that

q̃(|x|,s|0) = 1√
sD+κ0

e−
√

s/D|x|, (C.20)

and
D∂xq̃(0,s|0) = κ0q̃(0,s|0)−1. (C.21)

The form of the solution (and corresponding modification of the Robin boundary
condition) when the particle starts at the barrier plays a significant tole in establish-
ing the equivalence of snapping out BM.

Equation (C.15) now becomes

p̃(x,s) = q̃(x,s|x0)Θ(x)+
κ0e−
√

s/D|x|

2
√

sD
Γ (s), (C.22)

with Γ (s) = q̃(0,s|x0). It follows from equation (C.22) that the density p̃(x,s) satis-
fies the Laplace transform of the semi-permeable membrane BVP (C.2). First, tak-
ing the second derivative of equations (C.22) for x 6= 0± and using equation (C.16a)
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shows that

D
∂ 2 p̃(x,s)

∂x2 − sp̃(x,s) =−δ (x− x0), x ∈G. (C.23)

Second, equation (C.22) implies that

p̃(x,s)+ p̃(−x,s) = q̃(x,s|x0)+
κ0e−
√

s/D|x|
√

sD
Γ (s), (C.24a)

p̃(x,s)− p̃(−x,s) = q̃(x,s|x0) (C.24b)

for x > 0. Differentiating equation (C.24a) with respect to x and taking x = 0+ we
have

∂x p̃(0+,s)−∂x p̃(0−,s) = ∂xq̃(0+,s|x0)−
κ0

D
Γ (s) = 0 (C.25)

We have used the Robin boundary condition (C.16b). Hence,

D∂x p̃(0+,s) = D∂x p̃(0−,s). (C.26)

Similarly, differentiating equation (C.24b) with respect to x and taking x = 0+ gives

D∂x p̃(0+,s)+D∂x p̃(0−,s) = D∂xq̃(0+,s|x0) = κ0q̃(0,s|x0)

.= κ0[p̃(0+,s)− p̃(0−,s)]. (C.27)

Finally, combining equations (C.26) and (C.27) yields the permeable boundary con-
dition

D∂xρ̃(0±,s) =
κ0

2
[ρ̃(0+,s)− ρ̃(0−,s)]. (C.28)

This establishes that the snapping out BM is a single-particle realization of the
stochastic process whose probability density evolves according to the diffusion
equation with a semi-permeable membrane at x = 0.

Interfacial asymmetry (σ < 1) can be incorporated into snapping out BM by
taking the independent Bernoulli random variable Yn in Eq. (C.3) to have the biased
probability distribution P[Yn = 0] = α and P[Yn = 1] = 1−α for 0 < α < 1 [21].
The 1D renewal Eq. (C.13) becomes

p̃(x,s) = q̃(x,s|x0)+
κ0α

2
q̃(x,s|0)[p̃(0+,s)+ p̃(0−,s)], x > 0 (C.29a)

p̃(x,s) =
κ0[1−α]

2
q̃(|x|,s|0)[p̃(0+,s)+ p̃(0−,s)], x < 0. (C.29b)

Setting x = 0± in Eqs. (C.29), summing the results and rearranging recovers equa-
tion (C.14). It can then be shown that snapping out BM with biased switching and
α > 1/2 is equivalent to single-particle diffusion through a directed semipermeable
barrier with an effective permeability κ0α/2 and bias σ = (1−α)/α .
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C.2 Snapping out BM in Rd

Let us return to the setup of Fig. 6.5. Single-particle diffusion now takes place on the
space G =M∪Mc. HereM =M∪ ∂M− andMc =Mc∪ ∂M+ are disjoint
sets so that y ∈ ∂M corresponds to either y+ ∈ ∂M+ or y− ∈ ∂M− treated as
distinct points. Let p(x, t|x0), x,x0 ∈G, denote the probability density of the particle
with the initial condition X0 = x0 ∈M∪Mc and set

p(x, t) =
∫
G

p(x, t|x0)g(x0)dx0 (C.30)

for any continuous function g on G with
∫
G g(x0)dx0 = 1. The density p satisfies

the FP equation

∂ p(x, t)
∂ t

= D∇
2 p(x, t), x ∈M∪Mc, (C.31a)

J(y±, t) = κ0[p(y−, t)− p(y+, t)], y± ∈ ∂M±, (C.31b)

together with the initial condition ρ(x,0) = g(x). We wish to derive the higher-
dimensional version of the renewal equations (C.12) by sewing together partially
reflected BMs in the domainsM andMc, see Fig. 6.7.

B.2.1 Partially reflected BMs inM andMc

Consider a Brownian particle diffusing in the bounded domainM, see Fig. 6.7(a)
with ∂M− totally reflecting. Let Xt denote the position of the particle at time t. In
order to write down a stochastic differential equation (SDE) for X(t), we introduce
the boundary local time

L−(t) = lim
ε→0

D
ε

∫ t

0
H(ε−dist(X(τ),∂M−))dτ, (C.32)
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Fig. 6.7: Decomposition of (a) snapping out BM into two partially reflected BMs corresponding to
(b) Xt ∈ U c and (c) Xt ∈ U , respectively.
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with dist(X(τ),∂M−) denoting the shortest Euclidean distance of Xτ from the
boundary ∂M−. The corresponding SDE then takes the form

dX(t) =
√

2DdW(t)−n(X(t))dL−(t), (C.33)

where W(t) is a d-dimensional Brownian motion and n(X(t)) is the outward unit
normal at the point X(t) ∈ ∂M. The differential dL−(t) can be expressed in terms
of a Dirac delta function:

dL−(t) = Ddt
(∫

∂M−
δ (X(t)−y)dy

)
. (C.34)

Partially reflected BM inM is then obtained by stopping the stochastic process X(t)
when the local time L−(t) exceeds a random exponentially distributed threshold ̂̀
[39]. That is, the particle is absorbed somewhere on ∂M− at the stopping time

T − = inf{t > 0 : L−(t)> ̂̀}, P[̂̀> `] = e−κ0`/D. (C.35)

The marginal density for particle position (prior to absorption),

q−(x, t|x0)dx = P[x≤ X(t)< x+dx, t < T −|X0 = x0],

satisfies the diffusion equation with a Robin boundary condition on ∂M−:

∂q−(x, t|x0)

∂ t
= D∇

2q−(x, t|x0) for x,x0 ∈M, (C.36a)

D∇q−(x, t|x0) ·n =−κ0q−(x, t|x0) for x ∈ ∂M−, (C.36b)

and q−(x,0|x0) = δ (x−x0).
An analogous construction holds for partially reflected BM in Mc, see Fig.

6.7(b). Given the local time

L+(t) = lim
ε→0

D
ε

∫ t

0
H(ε−dist(X(τ),∂M+))dτ, (C.37)

and stopping time

T + = inf{t > 0 : L+(t)> ̂̀}, P[̂̀> `] = e−κ0`/D. (C.38)

one finds that the marginal density

q+(x, t|x0)dx = P[x≤ X(t)< x+dx, t < T +|X0 = x0]

satisfies the Robin boundary value problem (BVP)

∂q+(x, t|x0)

∂ t
= D∇

2q+(x, t|x0) for x,x0 ∈Mc, (C.39a)

D∇q+(x, t|x0) ·n = κ0q+(x, t|x0) for x ∈ ∂M+, (C.39b)
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and p+(x,0|x0) = δ (x−x0).

Modified boundary condition for x0 ∈ ∂M

As in the 1D case, the boundary condition for partially reflected BM inMc is mod-
ified when the particle actually starts on the boundary. In order to show this, we first
Laplace transform Eqs. (C.39) with respect to time t:

D∇
2q̃+(x,s|x0)− sq̃+(x,s|x0) =−δ (x−x0), x,x0 ∈Mc, (C.40a)

D∇q̃+(x,s|x0) ·n = κ0q̃+(x,s|x0) for x ∈ ∂M+. (C.40b)

Consider a small cylinder C(ε,σ) of uniform cross-section σ and length 2ε with a
point y ∈ ∂M at its center of mass, see Fig. 6.8. Let C+(ε,σ) = C(ε,σ)∩Mc For
sufficiently small σ , we can treat Σ0 ≡ C+(ε,σ)∩∂M+ as a planar interface with
outward normal n(y) such that the axis of C+(ε,σ) is aligned along n(y). Given the
above construction, we integrate Eq. (C.40a) with respect to all x ∈ C+(ε,σ) and
use the divergence theorem:∫

Σε

∇q̃+(y′,s|x0) ·n(y′)dy′−
∫

Σ0

∇q̃+(y′,s|x0) ·n(y′)dy′

∼ 1
D

∫
C+

[sq̃+(x,s|x0)−δ (x−x0)]dx, (C.41)

where Σε denotes the flat end of the cylinder within Mc. If x0 is in the bulk do-
main Mc, then taking the limits ε,σ → 0 shows that the flux is continuous as it
approaches the boundary, since the right-hand side of Eq. (C.41) vanishes. On the
other hand, if x0 = z ∈ ∂M+ then taking the limits ε,σ → 0 gives

lim
ε→0+

D∇q̃+(y+ εn(y),s|z) · q̃+(y)−D∇q̃+(y,s|z) ·n(y) =−δ (y− z), (C.42)

where δ is the Dirac delta function for points on ∂M such that for any continuous
function f :M→ R we have

∫
∂M f (y)δ (y− z)dy = f (z). Finally, noting that the

first flux term on the left-hand side satisfies the boundary condition (C.40b), we
deduce that

D∇q̃+(y,s|z) ·n(y) = κ0q̃+(y,s|z)−δ (y− z). (C.43)

Applying a similar argument to partially reflected BM inM we find that

D∇q̃−(y,s|z) ·n(y) =−κ0q̃−(y,s|z)+δ (y− z). (C.44)

The extra terms on the right-hand side of Eqs. (C.43) and (C.44) play a crucial role
in the subsequent analysis. They will also be confirmed by directly differentiating
example explicit solutions.

The Green’s function q̃+(x0,s|z) with z ∈ ∂M and x0 ∈Mc can be related to
the corresponding inverse local time [44]
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M

∂M+

∂M-

n

{ε
{ε

Σε

Σ0

Fig. 6.8: Cylinder construction across the semipermeable membrane. See text for details.

E[e−sT + |X0 = x0] =
∫

∞

0
f (x0, t)e−stdt, (C.45)

where f (x0, t) is the FPT density for being absorbed on ∂M. In terms of the survival
probability

Q(x0, t) =
∫
Mc

q+(x, t|x0)dx, (C.46)

we have

f (x0, t) =−
dQ(x0, t)

dt
=−

∫
Mc

∂q+(x, t|x0)

∂ t
dx =−D

∫
Mc

∇
2q+(x, t|x0)dx

= D
∫

∂M
∇q+(z, t|x0) ·ndz = κ0

∫
∂M

p(z, t|x0)dz. (C.47)

Hence,

E[e−sT |X0 = x0] = κ0

∫
∂M

q̃+(z,s|x0)dz = κ0

∫
∂M

q̃+(x0,s|z)dz (C.48)

by the standard symmetry property of Green’s functions.

Renewal equation

We define the multidimensional version of snapping out BM as follows. Without
loss of generality, suppose that the particle starts in the domain Mc. It realizes
reflected BM in Mc until it is killed when its local time L+(t), see Eq. (C.37), is
greater than an independent exponential random variable ̂̀. Let y+ ∈ ∂M+ denote
the point on the boundary where killing occurs. The stochastic process immediately
restarts as a new round of partially reflected BM, either from y+ intoMc or from
y− intoM. These two possibilities occur with equal probability. Subsequent rounds
of partially reflected BM are generated in the same way. We thus have a stochastic



6 Diffusive transport 29

process on the set G. As in the one-dimensional case [51], it can be proven that
snapping out BM is a strong Markov process. This means that we can consider a
multi-dimensional version of the renewal equation introduced in [12]. First, let

q+(x, t) =
∫
Mc

q+(x, t|x0)g(x0)dx0, (C.49a)

q−(x, t) =
∫
M

q−(x, t|x0)g(x0)dx0, (C.49b)

where q+(x, t|x0) and q−(x, t|x0) are the solutions of the Robin BVPs (C.39) and
(C.36), respectively. By construction, the probability density p(x, t) satisfies the last
renewal equations

p(x, t) = q+(x, t)+
κ0

2

∫ t

0

{∫
∂M

q+(x,τ|z)[p(z+, t− τ)+ po(z−, t− τ)]dz
}

dτ,

x ∈Mc, (C.50a)

p(x, t) = q−(x, t)+
κ0

2

∫ t

0

{∫
∂M

q−(x,τ|z)p(z+, t− τ)+ p(z−, t− τ)]dz
}

dτ,

x ∈M. (C.50b)

The first term on the right-hand side of Eqs. (C.50a) and (C.50b) represents all sam-
ple trajectories that have never been absorbed by the boundary ∂M+ and ∂M−,
respectively. The corresponding integral term in equation (C.50a) represents all tra-
jectories that were last absorbed (stopped) somewhere on ∂M± at time t− τ and
then switched to the domainMc with probability 1/2 in order to reach x ∈Mc at
time t. Since the particle is not absorbed over the interval (t− τ, t], the probability
of reaching x∈Mc starting at a point z∈ ∂M+ is q+(x,τ|z). We then have to inte-
grate with respect to all starting positions z at time t−τ . An analogous interpretation
holds for the integral term on the right-hand side of Eq. (C.50b), with q+→ q− and
∂M+→ ∂M−. Finally, the probability that the last stopping event occurred in the
interval (t− τ, t− τ +dτ) irrespective of previous events is κ0dτ .

We wish to establish that p(x, t) is a (weak) solution of the FP Eq. (C.31) un-
der the initial condition p(x,0) = g(x). It is clear that p(x, t) satisfies the diffusion
equation in the bulk so, as in the 1D example, we focus on the boundary conditions.
Laplace transforming the renewal equations(C.50a,b) with respect to time t gives

p̃(x,s) = q̃+(x,s)+
κ0

2

∫
∂M

q̃+(x,s|z)Σp(z,s)dz (C.51a)

for x ∈Mc and

p̃(x,s) = q̃−(x,s)+
κ0

2

∫
∂M

q̃−(x,s|z)Σρ(z,s)dz (C.51b)

for x ∈M. We have set
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Σρ(z,s) = p̃(z+,s)+ p̃(z−,s). (C.52)

Taking the normal derivative of Eqs. (C.51a,b) with ∂n ≡ n ·∇ in the limit x→ y ∈
∂M gives the pair of equations

∂n p̃(y+,s) = ∂nq̃+(y+,s)+
κ0

2

∫
∂M

∂nq̃+(y,s|z)Σρ(z,s)dz, (C.53a)

∂n p̃(y−,s) = ∂nq̃−(y−,s)+
κ0

2

∫
∂M

∂nq̃−(y,s|z)Σρ(z,s)dz. (C.53b)

Next, imposing the boundary conditions (C.40b) and (C.40b) for partially re-
flected BM and the modified boundary conditions (C.43) and (C.44) yields

D∂n p̃(y+,s) = κ0q̃+(y+,s)+
κ0

2

∫
∂M

[κ0q̃+(y,s|z)−δ (y− z)]Σρ(z,s)dz,

(C.54a)

D∂n p̃(y−,s) =−κ0q̃−(y−,s)−
κ0

2

∫
∂M

[κ0q̃−(y,s|z)−δ (y− z)]Σρ(z,s)dz.

(C.54b)

Subtracting this pair of equations, we find that

D∂n p̃(y+,s)−D∂n p̃(y−,s) = κ0[q̃+(y+,s)+ q̃−(y−,s)]−κ0Σρ(y,s) (C.55)

+
κ2

0
2

∫
∂M

[q̃+(y,s|z)+ q̃−(y,s|z)]Σρ(z,s)dz = 0.

The last line follows from setting x = y+ and x = y− in equations (C.51a) and
(C.51b), respectively, and adding the results. Finally adding equations. (C.54a,b)
gives

2D∂n p̃(y±,s)

= κ0[q̃+(y+,s)− q̃−(y−,s)]+
κ2

0
2

∫
∂M

[q̃+(y,s|z)− q̃−(y,s|z)]Σρ(z,s)dz

= κ0[p̃(y+,s)− p̃(y−,s)]. (C.56)

Hence, we have established the equivalence of multidimensional snapping out BM
with single-particle diffusion through a smooth semipermeable membrane of the
form shown in Fig. 6.5.
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D. Diffusion in an intermittent confining potential

Stochastic resetting is a mechanism whereby a system is returned to its initial state
at a random sequence of times that is typically generated by a Poisson process with
constant rate r, see Sect. 7.5. The simplest example is a Brownian particle that in-
stantaneously resets to its initial position x0 ∈ Rd [28, 29, 30]. There have been
a wide range of generalizations at the single particle level, see the review [32] and
references therein. These include both modifications in the underlying stochastic dy-
namics in the absence of resetting and modifications in the resetting protocol itself.
In order to develop physical implementations of resetting, it is necessary to relax the
assumption of instantaneous resetting. This has motivated the inclusion of various
sources of delays including finite return times [66, 67, 60, 7, 68, 10] and refractory
periods [31, 59]. An alternative practical realization of non-instantaneous resetting
is to use an external trapping or confining potential that is alternatively switched on
and off [42, 82, 75, 83], see Fig. 6.9. During the ON phases, a diffusing particle
tends to move toward the minimum of the potential, which thus plays an analogous
role to the resetting position in perfect resetting. The return phase is clearly of finite
duration. Moreover, once the particle reaches a neighborhood of the minimum, it
tends to remain there until switching to an OFF state, which is analogous to a re-
fractory phase. Diffusion in an intermittent potential is an example of a diffusion
process in a randomly switching environment, see Sect. 6.5.

V0(x)

V1(x)

ω0

ω1

search phase

return phase

refactory phase

Fig. 6.9: Diffusion in an intermittent confining potential.
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D.1 Diffusion in an intermittent potential as a switching-diffusion
process

As recently shown in Ref. [24], one can develop a probabilistic representation of
diffusion. in an intermittent potential by combining Itô stochastic calculus with a
stochastic representation of continuous time Markov chains. For the sake of illus-
tration consider 1D Brownian motion. We assume that there exists a finite set of
potential energy functions {V0,V1 . . . ,VK−1} such that the potential at time t is VN(t)
where N(t) ∈ {0, · · · ,K− 1} is a K-state continuous-time Markov chain (see Sect.
3.3). There are two distinct switching mechanisms, which are illustrated in Fig.
6.10 for a two-state process. The first mechanism consists of the particle switch-
ing between different internal conformational states n ∈ {0, · · · ,K− 1} that “see”
different potentials Vn (particle switching scenario). For example, the particle could
represent a protein that changes its shape in an external electric field, resulting in a
redistribution of its ionic charges. In the second mechanism the particle has a fixed
internal state while the external potential physically switches between different dis-
crete states (potential switching scenario). At the single-particle level, the stochastic
dynamics is the same whether N(t) is interpreted as a discrete conformational state
of the particle or an internal state of the potential. However, the two scenarios dif-
fer significantly at the population level, even if the particles are non-interacting, see
also Sect. 6.5.

The stochastic dynamics of a single particle is expressed in terms of the pair
of stochastic variables (X(t),N(t)) ∈ R×{0, · · · ,K− 1}. In between jumps in the
discrete state, the particle evolves according to the hybrid SDE (hSDE)

dX(t) =−1
γ

V ′N(t)(X(t))dt +
√

2DdW (t), (C.1)

The discrete stochastic process N(t) is a K-state continuous-time Markov chain with
a K×K matrix generator A that is related to the corresponding transition matrix K
according to

Anm =Knm−δn,m

K−1

∑
k=0
Kkm. (C.2)

We also assume that the generator is irreducible so that there exists a stationary
distribution σ for which ∑m Anmσm = 0. It is useful to decompose the transition
matrix as Knm = Pnmλm, with ∑n,n6=m Pnm = 1. That is, the jump times from state m
are exponentially distributed with rate λm and Pnm is the probability distribution that
when a jump occurs the new state is n for some n 6= m. The hybrid evolution of the
system with respect to X(t) and N(t) can then described as follows (see Sect. 5.3
and Box 5D). Suppose the system starts at time zero in the state (x0, n0). Call X0(t)
the solution for n = n0 such that X0(0) = x0. Let T`, ` ≥ 1, denote the sequence of
jump times for a given realization of the stochastic process such that

N(t) = N`, T` ≤ t < T`+1. (C.3)
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(b)

(a)

ω1

ω1

ω0

ω0

N(t) = 0 N(t) = 1

V1(x)

(c)

x

V0(x)

x

ω1

ω0

Fig. 6.10: Two alternative sources of switching for a two-state hSDE. (a) The particle switches
between two different conformational states with internal energies εn, n = 0,1 (indicated by the
particle shape). (b) The subsystem generating the potential switches between two conformational
states with internal energies εn, n = 0,1 (indicated by the shade). (c) Both mechanisms result in
the effective potential “seen” by the particle, VN(t)(x), depending on the discrete state N(t).

In particular, N(T −` ) = N`−1 and N(T`) = N`. Note that we take N(t) to be right-
continuous, as illustrated in Fig. 6.11 for a 2-state Markov chain. Taking T0 = 0, the
resulting piecewise continuous dynamics can be rewritten as

(X(t),N(t)) = (X`(t),N`) for T` ≤ t < T`+1, (C.4a)

with

dX`(t) =−
1
γ

V ′N`
(X(t))dt +

√
2DdW (t) for T` ≤ t < T`+1, (C.4b)

X`(T`) = X`−1(T −` ). (C.4c)

Equations (C.4a) -(C.4c) specify the hSDE.
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N(t)

t
T1 T2 T3 T4

Fig. 6.11: One path of a 2-state Markov chain N(t) ∈ {0,1}, illustrating that it is right-continuous.
Jumps occur at the times T`, `≥ 1.

Stochastic calculus of hSDEs

Since the finite state Markov chain N(t)∈ {0, . . . ,K−1} is independent of X(t), we
can combine the Itô formulas for SDEs and Markov chains. First, consider the latter.
Let h : {0, . . . ,K− 1} → R denote an arbitrary, bounded function on the Markov
chain. Using telescoping, we have

h(N(t))−h(N(0)) =
`t

∑
`=1

[h(N`)−h(N`−1)] =
`t

∑
`=1

[h(N(T`))−h(N(T`−1))]

= ∑
n

∞

∑
`=1

∫ t

0
[h(n)−h(N(s−))]δ (s−T`)δN(s),nds

= ∑
m,n

∫ t

0
[h(n)−h(m)]dNnm(s), (C.5)

with

dNnm(t) =
∞

∑
`=1

δN(t−),mδN(t),nδ (t−T`)dt. (C.6)

Note that

Nnm(t) =
N(t)

∑
`=1

δN(T −` ),mδN(T`),n (C.7)

is the number of jumps m→ n in the time interval [0, t]. The corresponding differ-
ential equation is

dh(N(t)) := h(N(t))−h(N(t−)) = ∑m,n[h(n)−h(m))]dNnm(t). (C.8)

Taking expectations of both sides with respect to the jump process in the case f (n)=
n yields
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E[dN(t)] = ∑
m,n

(n−m)E[dNnm(t)]. (C.9)

Using the definition of the transition rates Knm we have

E[dNnm(t)] =KnmE[δm,N(t−)]dt. (C.10)

Next we consider an indexed set of smooth, bounded functions fn : R→ R, n ∈
{0, . . . ,K−1}. The extended Itô formula for f (t) = fN(t)(X(t)) is then

d f (t) = dx fN(t)(X(t))+ fN(t)(X(t))− fN(t−)(X(t)), (C.11)

where dx fN(t)(X(t)) = fN(t)(X(t)+dX(t))− fN(t)(X(t)) is the change due to a small
displacement in the position and fN(t)(X(t))− fN(t−)(X(t)) represents a discrete
jump, which only occurs at the discrete times T`. Combining Itô’s formula for SDEs
with equation (C.8) gives

d f (t) =
(
−1

γ
V ′N(t)(X(t)) f ′N(t)(X(t))+D f ′′N(t)(X(t))

)
dt

+
√

2D f ′N(t)(X(t))dW (t)+
K−1

∑
m,n=0

[ fn(X(t))− fm(X(t))]dNnm(t). (C.12)

The extended Itô formula (C.12) can be used to derive the corresponding differential
CK equation for the hSDE, which was simply written down in Sect. 6.5. Introducing
the empirical measure

ρn(x, t) = δ (x−X(t))δn,N(t), (C.13)

we have the identity

fN(t)(X(t)) =
K−1

∑
n=0

∫
R

ρn(x, t) fn(x)dx. (C.14)

Taking differentials of both sides with respect to t yields

d f (t) =
[
∑
n

∫
R

fn(x)
∂ρn(x, t)

∂ t
dx
]

dt (C.15)

Substituting equation (C.12) into the left-hand side of equation (C.15) and using the
definition of ρn gives

∑
n

∫
R

ρn(x, t)
[
− 1

γ

∂ fn(x)
∂x

V ′n(x)+D
∂ 2 fn(x)

∂x2 +
√

2D
∂ fn(x)

∂x
ξ (t)

]
dx

+∑
n,m

[∫
R

δ (x−X(t)))[ fn(x)− fm(x)]dx
]

dNnm(t) = ∑
n

∫
R

fn(x)
∂ρn(x, t)

∂ t
dx.

Performing an integration by parts,
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∑
n

∫
R

fn(x)
[

1
γ

∂V ′n(x)ρn(x, t)
∂x

+Dn
∂ 2ρn(x, t)

∂x2 −
√

2Dn
∂ρn(x, t)

∂x
ξ (t)

+∑
m

δ (x−X(t))[dNnm(t)−dNmn(t)]
]

dx = ∑
n

∫
R

fn(x)
∂ρn(x, t)

∂ t
dx.

Since the functions fn are arbitrary, we obtain the hybrid stochastic partial differen-
tial equation (hSPDE)

∂ρn

∂ t
= D

∂ 2ρn

∂x2 +
1
γ

∂

∂x
[V ′n(x)ρn]+

√
2D

∂ρn(x, t)
∂x

ξ (t)

+∑
m

δ (x−X(t))[dNnm(t)−dNmn(t)]. (C.16)

Finally, define the indexed set of probability densities

pn(x, t) =
〈
E
[
δ (x−X(t))δn,N(t)

]〉
, (C.17)

where E[·] and 〈·〉 denote taking expectations with respect to the white noise process
and the Markov chain, respectively. The indexed densities pn evolve according to
a forward differential Chapman-Kolmogorov (CK) equation, see 6.5. This follows
from taking expectations with respect to the white noise process and the Markov
chain. In particular, noting that

In(x, t) :=
〈
E
[
∑
m

δ (x−X(t))[dNnm(t)−dNmn(t)]
]〉

=
K−1

∑
m=0
Knm

〈
E
[
δ (x−X(t))[δm,N(t)

]〉
−

K−1

∑
m=0
Kmn

〈
E
[
δ (x−X(t))[δn,N(t)

]〉
=

K−1

∑
m=0

[Knm pm(x, t)−Knm pn(x, t)] =
K−1

∑
m=0

Anm pm(x, t), (C.18)

we obtain the CK equation

∂ pn

∂ t
=−∂Jn(x, t)

∂x
+

K−1

∑
m=0

Anm pm(x, t), (C.19)

with

Jn(x, t) =−
1
γ

V ′n(x)pn(x, t)−D
∂ pn(x, t)

∂x
. (C.20)

The first term on the right-hand side of equation (C.19) represents the probability
flow associated with the SDE for a given n, whereas the second term represents
jumps in the discrete state n.
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D.2 Diffusion in a switching harmonic potential

Let us return to the two-state process shown In Fig. 6.9, in which a confining har-
monic potential is randomly switched on and off in order to provide a physical
realization of stochastic resetting [42, 82, 75, 83]. The corresponding hSDE takes
the form

dX(t) =−1
γ

∂xV (x, t)dt +
√

2DdW (t), (C.21)

with

V (x, t) = N(t)V (x), V (x) =
µx2

2
, (C.22)

and N(t) ∈ {0,1}. The two-state Markov chain N(t) is sometimes called a dichoto-
mous noise process..The corresponding CK equation is

∂ p0(x, t)
∂ t

= D
∂ p0(x, t)

∂x2 −ω p0(x, t)+ω p1(x, t), (C.23a)

∂ p1(x, t)
∂ t

= µ
∂xp(1(x, t)

∂x
+D

∂ p0(x, t)
∂x2 +ω p0(x, t)−ω p1(x, t). (C.23b)

For convenience, we have absorbed the drag coefficient into the amplitude µ of the
harmonic potential, and taken K01 = K10 = ω . Note that p0 and p1 correspond,
respectively, to the potential being OFF and ON. It does not appear possible to
derive a closed expression for the nonequilibrium stationary state (NESS) p∗(x) of
the corresponding time-independent CK equation. However, one can determine the
Fourier transform P̂n(k) =

∫
R e−ikx p∗n(x)dx and use this to derive various asymptotic

approximations [75]. We summarize the basic results here.
Fourier transforming the steady-state version of equations (C.23a) and (C.23b)

gives

−Dk2P̂0(k)−ωP̂0(k)+ωP̂1(k) = 0, (C.24a)

−Dk2P̂1(k)−µ
d
dk

[
kP̂1(k)

]
+(µ−ω)P̂1(k)+ωP̂0(k) = 0. (C.24b)

Expressing P̂0(k) in terms of P̂1(k) using equation (C.24b) and substituting the result
into equation (C.24a), one finds that [75]

P̂0(k) =
ω

ω +Dk2 P̂1(k), (C.25a)

P̂1(k) =
C0

(ω +Dk2)ω/(2µ)
e−Dk2/(2µ). (C.25b)

The normalization constant C0 = ωω/(2µ)/2. For general parameter values, it is not
possible to invert these Fourier transforms. However, following Ref. [75], suppose
that the system operates in the slow switching regime ω � µ . In that case, we have
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P̂0(k)≈
ω

2[ω +Dk2]
e−Dk2/(2µ), P̂1(k)≈

1
2

e−Dk2/(2µ). (C.26)

These can be inverted to give the following approximation of the NESS [75]:

p∗0(x) =
1
2

√
ω/Deω/(2µ)

4
e−
√

ω/D|x|erfc
(√

ω/D
2µ

−
√

µ

2D
|x|
)
, (C.27a)

p∗1(x) =
1
2

e−µx2/(2D)√
2πD/µ

, (C.27b)

where erfc(x) = (2/
√

π)
∫

∞

x e−z2
dz is the complementary error function. Note that

p∗1(x) dominates near the origin, which is consistent with the idea that in the ON
state, the harmonic potential localizes the particle to a neighborhood of the origin,
which is the minimum of the potential. On the other hand, p∗0(x) dictates the behav-
ior in the tails of the NESS, since the particle is no longer trapped.

These results are illustrated in Fig. 6.12, where we plot p∗0(x) and p∗1(x) for dif-
ferent choices of µ and ω . From the asymptotic behavior of the Gaussian and the
complementary error function, one finds that in the limit µ → ∞,

p∗0(x)≈
1
2

√
ω/D
2

e−
√

ω/D, p∗1(x)≈
1
2

δ (x). (C.28)

As noted in Ref. [75], this is precisely the NESS for pure diffusion with instanta-
neous resetting to the origin at a rate r = ω followed by a Poissonian refractory
period whose mean waiting time is 〈τ〉 = 1/ω [31]. The observation that diffusion
in an intermittent harmonic potential with a large amplitude µ behaves like diffu-
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Fig. 6.12: Nonequilibrium stationary state (NESS) for an overdamped Brownian particle in an
intermittent harmonic potential. The stationary densities p∗0(x) (solid curves) and p∗1(x) (dashed
curves) are plotted for various values of (µ,ω) and D = 1. (a) Fixed µ = 1 and different switching
rates ω . The curves for p∗1(x) are indistinguishable for this case. (b) Fixed ω = 1 and different
potential amplitudes µ .
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Fig. 6.13: Diffusion in an intermittent harmonic potential. Sample trajectory of the particle position
X(t). The horizontal bars indicate the time intervals during which N(t) = 1 (the ON state). Other
parameters are D = 1, µ = 100 and ω = 1. The step size for the numerical simulation is dt = 0.01.
Since µ is relatively large, transitions from OFF to ON result in a sharp return of the particle to the
origin.

sion with instantaneous resetting and a refractory period is further confirmed in Fig.
6.13, where we plot X(t) for a single long run.

Finally, note that in the fast switching limit, the hSDE (C.21) reduces to the
Ornstein-Uhlenbeck process

dX(t) =−∂xV (x)dt +
√

2DdW (t), V (x) =
µ

4
x2. (C.29)

Again we have absorbed γ into µ , and we have used the fact that σ0 = σ1 = 1/2.
It immediately follows that the system converges to an equilibrium stationary state
with

p∗(x) =
e−µx2/4D√

4πD/µ
. (C.30)

This result also follows from equations (C.25a) and (C.25b) by noting that if ω� µ

then [75]
P̂(k) = P̂0(k)+ P̂0(k)≈ e−Dk2/µ , (C.31)

which is the Fourier transform of the Gaussian in equation (C.30).





Chapter 7
Active transport

A. Modeling stochastic search-and-capture as a G/M/1 queue

In Sect. 7.4 we showed how the accumulation of resources in a target due to a se-
quence of search-and-capture events can be mapped onto a queuing process. The
particular queuing model that is most relevant to the target problem is the G/M/n
model. Here the symbol G denotes a general inter-arrival time distribution F(t),
which will depend on the first passage time distribution of the individual search-and-
capture processes. The symbol M stands for a Markovian or exponential service-
time distribution H(t) = 1− e−λ t , and n denotes the number of servers. In the case
of a first-in-first-out utilization policy we have n= 1 (a single server queue), whereas
n = ∞ (infinite server queue) when the target resources packets are consumed inde-
pendently, see Fig. 7.1. In Sect. 7.4 we modeled target resource accumulation in
terms of a G/M/∞ queue. Here we use classical results from the analysis of G/M/1
queues [27, 1] to develop the analogous theory for the first-in-first-out utilization
policy. Such an analysis is warranted due to significant differences in the mathemat-
ics of single-server and infinite-server queues. For simplicity, we focus on the case
of a single target or queue. A single-server queuing system is characterized by two
sequences {Tn,n ≥ 1} and {Sn,n ≥ 1} of independent positive random variables.
The first is the inter-arrival times of customers with common distribution function
F and the second is the service times with common distribution function H. Each
arriving customer joins the line of customers who are waiting to receive attention
from the single server. When the n-th customer reaches the head of the line, it is
served for a period Sn and then immediately leaves the system. Let Q(t) denote the
number of waiting customers at time t, including any customer currently receiving
service (the queue length). Then {Q(t) : t ≥ 0} is itself a stochastic process whose
statistics is determined by F and H. Although Q is not a Markov chain in the case
of a G/M/1 queue there exists an imbedded discrete-time Markov chain that can
be used to calculate quantities of interest such as the moment generating functions
of the queue length when a new customer arrives and customer waiting times [27].
In contrast, although a G/M/∞ queue is also non-Markovian, it can be analyzed

41
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arriving packets

resources in target

sequential

consumption

independent consumption

Fig. 7.1: Accumulation and consumption of resources in a target. The sequential delivery of pack-
ets of resources leads to an accumulation of resources in the target. In a sequential consumption
model, resources are used in the order they are received (first-in-first-out policy). In an independent
consumption model, each packet within a target is utilized independently of the others.

in continuous time by using renewal theory to solve integral equations for various
moment generating functions [80, 55], see Sect. 7.4.

A.1 G/M/1 queue as an imbedded Markov chain

Consider the queue G/M(λ )/1 consisting of a single server, in which individual
customers arrive according to a general (non-Markovian) distribution F(t) and the
waiting time to service a customer is exponentially distributed with intensity λ .
Let An be the time of arrival of the nth customer and let Q(An) be the number of
customers waiting in line ahead of the customer at the time of arrival. We have the
iterative equation

Q(An+1) = Q(An)+1−Vn, (A.1)

where Vn is the number of departures (customers served) in [An,An+1). Note that
Vn depends on Q(An) since not more than Q(An) + 1 individuals can depart dur-
ing this interval. However, given Q(An) the random variable is independent of
Q(A1),A(Q2), . . .Q(An−1) so that equation (A.1) represents a discrete-time Markov
chain. Hence, its dynamics is completely determined by the transition probabilities

Ki j = P(Q(An+1) = j|Q(An) = i).

We calculate these transition probabilities by noting that
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Ki j = EX

[
P[Vn = 1+ i− j|Q(An) = i,X ]

]
, (A.2)

where X is the stochastic inter-arrival time. The number of departures over a time
interval of length X is given by an exponential distribution with intensity λ , that is,

P[Vn = |Q(An) = q,X = x] =


(λx)k

k!
e−λk, k ≤ q

1−
q

∑
k=0

(λx)k

k!
e−λk, k = q+1

. (A.3)

It follows that the transition matrix has the general form

K =


1−α0 α0 0 . . . . . .
1−α0−α1 α1 α0 0 . . .
1−α0−α1−α2 α2 α1 α0 0 . . .
...

...
...

...
...

...

 , (A.4)

where

α j = E
[
(λX) j

j!
e−λX

]
. (A.5)

B.2 Asymptotic queue length

Suppose there exists a unique stationary solution p j = limn→∞P[Q(An) = j], which
satisfies the equation p = pK with ∑

∞
j=0 p j = 1. (We will determine when such a

solution exists below.) The first component of the stationary equation is

p0 = (1−α0)p0 +(1−α0−α1)p1 +(1−α0−α1−α2)p2 + . . .

=

(
∞

∑
j=1

α j

)
)p0 +

(
∞

∑
j=2

α j

)
p1 + . . .

= α1 p0 +α2(p0 + p1)+α3(p0 + p1 + p2)+ . . . (A.6)

We have used the normalization ∑
∞
j=0 α j = 1. Introducing the new variables

yi = p0 + p1 + . . .+ pi−1, (A.7)

we can write

y1 =
∞

∑
i=1

αiyi. (A.8a)

Similarly, the second component of the stationary equation is
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Δ(σ)

σ

Δ(0) σ = σ∗

σ = 1

Fig. 7.2: Graphical construction of solutions to equation (A.13) for ρ < 1.

p1 = α0 p0 +α1 p1 +α2 p2 +α3 p3 + . . . ,

which combined with the first line of equation (A.6) implies that

p0 + p1 = p0 +(1−α0)p1 +(1−α0−α1)p2 + . . .

= (α0 +α1 +α2 + . . .)p0 +(α1 +α2 +α3 + . . .)p1 +(α2 +α3 + . . .)p2

= α0 p0 +α1(p0 + p1)+α2(p0 + p1 + p2)+ . . . ,

that is, y2 = ∑
∞
i=0 αiy1+i. Generalizing this analysis shows that

y j =
∞

∑
i=0

αiy j+i−1, j ≥ 2. (A.8b)

Consider the trial solution y j = 1−σ j for some σ , 0 < σ < 1. Substituting into
equation (A.8b) gives

1−σ
j =

∞

∑
i=0

[1−σ
j+i−1] = 1−σ

j−1
∆(σ), ∆(σ)≡

∞

∑
i=0

αiσi. (A.9)

We thus obtain the following self-consistency condition for σ :

∆(σ) = σ . (A.10)
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One obvious solution of equation (A.10) is σ = 1 since ∆(1) = ∑
∞
i=0 αi = 1.

However, this does not result in a convergent series. In order to proceed further, we
note that

∆(σ) =
∞

∑
j=0

αiσ
j =

∞

∑
j=0

[
(λσX) j

j!
e−λX

]
= E

[
e−(1−σ)λX

]
≡ GX [λ (1−σ)], (A.11)

where GX is the moment generating function of the stochastic process X . Given the
inter-arrival time distribution F(t), we have

GX [s] = F̃(s) :=
∫

∞

0
e−stdF(t). (A.12)

Hence, the self-consistency condition (A.10) becomes

σ = F̃(λ (1−σ)). (A.13)

It is straightforward to show that ∆(0) = α0 > 0,

∆
′(σ) = λE

[
Xe−(1−σ)λX

]
> 0, (A.14)

and
∆
′(1) = λE[X ] :=

1
ρ
, (A.15)

where ρ is known as the traffic intensity. Finally,

∆
′′(σ) = λ

2E
[

X2e−(1−σ)λX
]
> 0. (A.16)

In summary, ∆(σ) is a positive definite, convex, monotonically increasing function
of σ for σ ∈ [0,1]. In addition, if ∆ ′(1) > 1 then the graphical construction of Fig.
7.2 establishes the existence of unique solution σ∗ ∈ (0,1) that satisfies equation
(A.13). Finally, the normalized stationary solution is

pn = (1−σ
∗)(σ∗)n, F̃(λ (1−σ

∗)) = σ
∗. (A.17)

B.3 Waiting times and busy periods

The n-th customer waits for a length of time

Wn = Z∗1 +Z2 + . . .+ZQ(An), (A.18)
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Q(t)

time t

busy period

idle period

Fig. 7.3: Schematic illustration of the busy period and the idle period of a single queueing cycle.
The total waiting time during the busy period is equal to the shaded area under the curve.

where Z∗1 is the excess service time of the current customer and Zk, k > 1, are the
service times of the other customers in the queue at time t = A+

n . Since servicing is
Markovian, the distribution of Z∗1 is the same as the distribution for Z1. Hence, the
waiting time generator is given by

GW (s) : = E
[
e−sW ]

= E
[
E
(

e−s(Z1+...+ZQ)|Q
]]

=
∞

∑
n=0

pn
(
E
[
e−sZ])n

. (A.19)

Using equation (A.13) and the expectation

E
[
e−sZ]= λ

∫
∞

0
e−sxe−λxdx =

λ

s+λ
, (A.20)

we find that

GW (s) =
∞

∑
n=0

pn

(
λ

s+λ

)n

= (1−σ
∗)

∞

∑
n=0

pn

(
λσ∗

s+λ

)n

= (1−σ)
1

1−λσ∗/(s+λ )
= (1−σ

∗)
s+λ

s+λ −λσ∗
. (A.21)

Another important quantity in a queueing process is the time that elapses between
two consecutive arrivals finding an empty system. This so-called cycle starts with
a busy period BP during which the server is helping customers, followed by an
idle period IP during which the system is empty. (Within the context of stochastic-
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search-and-capture process, the IP is a critical time interval during which the target
cannot be utilized by downstream processes. A schematic illustration of a cycle is
shown in Fig. 7.3. Let us introduce a set of random variables conditioned on the
arrival of the first customer at t = 0, say:

Y = the busy period = inf{t > 0,Q(t) = 0}
Z = the cycle period = inf{t > Y,Q(t)> 0}

QB = the number of customers served during the busy period

The following expression can be derived for the corresponding multi-variable gen-
erating function [26, 79]:

E
[
e−sY e−wZuQB

]
=

λu[F̃(w)−σ(s+w,u;λ )]

s+λ −λuσ(s+w,u;λ )
, (A.22)

where F̃(s) is the Laplace transform of the inter-arrival distribution, see equation
(A.12), and σ(s+w,u;λ ) is the smallest root of the implicit equation

F̃(s+w+λ −λuσ) = σ . (A.23)

In particular, note that σ(0,1 : λ ) = σ∗, where σ∗ is the smallest root of equation
(A.13).

B.4 Target resource accumulation

We now incorporate a multiple search-and-capture process into a G/M/1 model of
resource utilization. We assume that a single searcher returns to its initial position x0
after delivering its cargo, and then starts a new round of search-and-capture follow-
ing a constant waiting time ∆0. Let Tk denote the FPT for the kth round of search-
and-capture, whose FPT density is given by f (x0, t). Let τk be the corresponding
time at which the kth packet of resources is delivered to the target. It follows that

τ1 = T1, τk = τk−1 +Tk +∆0, k ≥ 2, (A.24)

The inter-arrival time distribution F(t) is then related to the FPT density f (x0, t) of
a single search-and-capture process according to

F(t) = f (x0, t−∆0)Θ(t−∆0), (A.25)

where Θ(t) is the Heaviside function. Laplace transforming this equation implies
that

F̃(s) = f̃ (x0,s)e−∆0s. (A.26)
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Finally, substituting for F̃ into equation (A.13) leads to the self-consistency condi-
tion

σ = f̃ (x0,λ (1−σ))e−∆0λ (1−σ) (A.27)

Recall from Sect. 7.5.2 that in the case of a stochastic search process with resetting,
the FPT density in Laplace space is related to the Laplace tranform of the survival
probability without resetting according to

f̃ (x0,s) =
1− (r+ s)Q̃0(x0,r+ s)

1− rQ̃0(x0,r+ s)
. (A.28)

As a simple example, consider a diffusing particle on the interval [0,L] with an
absorbing target at x= 0 and a reflecting boundary at x= L. Suppose that the particle
resets to a point x0 at a constant rate r (see Sect. 7.5). In the absence of resetting the
Laplace transformed survival probability Q̃0(x,s) satisfies the equation

D
d2Q̃0

dx2 − sQ̃0 =−1, x ∈ (0,L), (A.29a)

together with the boundary conditions

Q̃0(0,s) = 0, , ∂xQ̃0(L,s) = 0. (A.29b)
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Fig. 7.4: Function ∆(σ) for diffusion with resetting on the half-line. x0 = D = 1 λ = 1 = ∆0
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Fig. 7.5: Corresponding plot of σ∗ vs r

The solution takes the form

Q̃0(x0,s) =
1
s

(
1−

cosh(
√

s/D[L− x0])

cosh(
√

s/DL)

)
. (A.30)

In the limit L→ ∞, we obtain the corresponding survival probability on the semi-
infinite interval:

Q0(xr, t) = erf(x0/2
√

Dt), Q̃0(x0,s) =
1− e−

√
s/Dx0

s
. (A.31)

which is the Laplace transform of the survival probability on the half-line. It follows
that the Laplace transform of the FPT density with resetting is

f̃ (x0,s) =
(r+ s)cosh(

√
[r+ s]/D[L− x0])

scosh(
√

[r+ s]/DL)+ r cosh(
√
[r+ s]/D[L− x0])

. (A.32)

In the limit L→ ∞ this simplifies as

f̃ (x0,s) =
(r+ s)e−

√
[r+s]/Dx0

s+ re−
√

[r+s]/Dx0
(A.33)
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B. Probabilistic formulation of stochastic resetting

Most studies of diffusion with instantaneous resetting focus on the distribution of
sample paths expressed as the solution to a forward or backward Fokker-Planck (FP)
equation with additional source and sink terms, see Sect. 7.5. However, there exists
a complementary probabilistic approach in which individual sample paths are repre-
sented by solutions of a stochastic differential equation (SDE) for a jump-diffusion
process [56, 24]. The latter probabilistic formulation has a number of useful fea-
tures.

(i) There exists a generalised version of Itô’s lemma for jump-diffusion processes
that provides a direct link between sample paths and the underlying FP equation
with resetting. This can be used to derive global density equations for populations
of diffusing particles with local or global stochastic resetting [23].

(ii) The SDE for instantaneous resetting can be combined with a more general
encounter-based formulation of diffusion-mediated surface absorption at a target
boundary, see supplementary material 6A.

(iii) Stochastic calculus is playing an increasingly important role in stochastic ther-
modynamics [77, 78, 70, 73]. The latter extends classical ideas of entropy, heat
and work to mesoscopic non-equilibrium systems. The generalised Itô’s lemma for
jump-diffusion processes has recently been used to determine the rate of stochas-
tic entropy production along sample paths of diffusing particles with instantaneous
resetting [24]. Averaging the stochastic entropy with respect to the ensemble of
stochastic trajectories leads to a second law of thermodynamics that quantifies the
degree of departure from thermodynamic equilibrium, The resulting analysis com-
plements previous studies based on the Gibbs-Shannon entropy of the ensemble
[37] or the ratio of the path probabilities of forward and time-reversed trajectories
[65, 25, 62].

For simplicity, we focus on continuous one-dimensional (1D) diffusion pro-
cesses. Let X(t) ∈ R denote the position of a single Brownian particle at time t
that instantaneously resets to its initial position x0 at the random times T̂n generated
by a Poisson process N(t) with rate r, see the appendix. The stochastic dynamics in
the presence of resetting can be represented in terms of the jump-diffusion process
[56, 24]

dX(t) =−V ′(X(t))
γ

dt +
√

2DdW (t)+(x0−X(t−))dN(t), (B.1)

where W (t) is a Wiener process with

〈W (t)〉= 0, 〈W (t)W (s)〉= min{t,s}. (B.2)

The solution X(t) is taken to be right-continuous so that

X(T̂n) = lim
t→T̂−n

(x0−X(t))+ lim
t→T̂−n

X(t) = x0, (B.3)
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which corresponds to perfect resetting. In standard formulations of stochastic re-
setting at the single-particle level [32], the SDE (B.1) is averaged over multiple
realisations of the Poisson resetting process. Since P[T̂n ∈ [t, t +dt]] = rdt, equation
(B.1) becomes

dX(t) = −V ′(X)

γ
dt +
√

2DdW with probability 1− rdt, (B.4a)

dX(t) = x0−X(t) with probability rdt. (B.4b)

For a general introduction to jump-diffusion processes see Ref. [6].

B.1 Generalised Itô’s lemma and the Fokker-Planck equation

Let f (x) be an arbitrary smooth bounded test function on R. The infinitesimal
d f (X(t)) can be decomposed as

d f (X(t)) = f ′(X(t))[−V ′(X(t))dt/γ−+
√

2DdW (t)] (B.5)

+
1
2

f ′′(X(t)[−V ′(X(t))dt/γ−
√

2DdW (t)]2

+

[
f (X(t))− f (X(t−))

]
dN(t)+o(dt).

Using the identity dW (t)2 = dt and dropping all o(dt) terms yields an extended
version of Itô’s lemma for the jump-diffusion process:

d f (X(t)) = [− f ′(X(t))V ′(X(t))/γ +D f ′′(X(t)]dt +
√

2D f ′(X(t))dW (t)

+

[
f (X(t))− f (X(t−))

]
dN(t). (B.6)

The corresponding integral version of the extended Itô’s lemma is

f (X(t) = f (x0)+
∫ t

0

[
− f ′(X(s))V ′(X(s))/γ +D f ′′(X(s))

]
ds

+
√

2D
∫ t

0
f ′(X(s))dW (s)+

∫ t

0

[
f (X(s))− f (X(s−))

]
dN(s).(B.7)

Substituting for dN(s) using (see the appendix)

dN(s) := h(s)ds = ∑
n≥1

δ (t− T̂n)ds, (B.8)

implies that the final integral can be rewritten as
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I (t) =
∫ t

0

[
∑
n≥1

[
f (X(s))− f (X(s−))

]
δ (s− T̂n)ds (B.9)

= ∑
n≥1

[
f (X(T̂n))− f (X(T̂−n ))

]
Θ(t− T̂n) = ∑

n≥1

[
f (x0)− f (X(T̂−n ))

]
Θ(t− T̂n),

where Θ is a Heaviside function. We have used the fact that X(Tn) = x0.
Let pr(x, t) be the probability density for the particle to be at position x at time t

with

pr(x, t) =
〈
E
[

δ (x−X(t))
]〉

. (B.10)

The subscript r means that pr is the probability density in the presence of resetting
at a rate r. Moreover, 〈·〉 denotes expectation with respect to the white noise process
and E denotes expectation with respect to the resetting process. We assume that
the two sources of noise are uncorrelated. Consider the following equation for an
arbitrary test function f :[∫

R
f (x)

∂ρ(x, t)
∂ t

dx
]

dt = d f (X(t)), (B.11)

where ρ(x, t) = δ (x−X(t)). Applying Itô’s lemma (B.6) and using equation (B.8)
gives∫

R
f (x)

∂ρ(x, t)
∂ t

dx =
∫
R

ρ(x, t)
[
− f ′(x)V ′(x)/γ +D f ′′(x)+

√
2D f ′(x)ξ (t)

]
dx

+ ∑
n≥1

δ (t− T̂n)
∫
R
[δ (x− x0)−ρ(x, t−)] f (x)dx. (B.12)

We have formally set dW (t) = ξ (t)dt with ξ (t) a white noise process such that

〈ξ (t)〉= 0, 〈ξ (t)ξ (t ′)〉= δ (t− t ′). (B.13)

Integrating by parts and using the arbitrariness of f leads to the stochastic partial
differential equation (SPDE)

∂ρ

∂ t
= D

∂ 2ρ(x, t)
∂x2 +

1
γ

∂V ′(x)ρ(x, t)
∂x

+
√

2D
∂ρ(x, t)

∂x
ξ (t)

+ ∑
n≥1

δ (t− T̂n)[δ (x− x0)−ρ(x, t−)]. (B.14)

Finally, taking expectations with respect to the white noise and resetting process
recovers the standard FP equation for diffusion with resetting [32]:

∂ pr(x, t)
∂ t

= D
∂ 2 pr(x, t)

∂x2 +
1
γ

∂V ′(x)pr(x, t))
∂x

+ r[δ (x− x0)− pr(x, t)] (B.15)
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with pr(x,0) = δ (x− x0). We have used the identity

E[∑
n≥1

δ (t− T̂n)dt] = E[dN(t)] = rdt, (B.16)

see the appendix.
The above SDE formulation of stochastic resetting can be extended to the case

where the resetting point is distributed according to some density σ0(x) along the
lines considered in Refs. [38, 81]. This means that at the n-th reset time T̂n we have
X(T̂n) = Xn with P[Xn ∈ [x,x+ dx]] = σ0(x)dx. Formally speaking, equation (B.1)
becomes

dX(t) = −V ′(X(t))
γ

dt +
√

2DdW (t)+ ∑
n≥1

(Xn−X(t−))δ (t− T̂n), (B.17)

and equation (B.14) takes the form

∂ρ(x, t)
∂ t

= D
∂ 2ρ(x, t)

∂x2 +
1
γ

∂V ′(x)ρ(x, t)
∂x

+
√

2D
∂ρ(x, t)

∂x
ξ (t)

+ ∑
n≥1

[δ (x−X`)−ρ(x, t−)]δ (t− T̂n). (B.18)

Finally, averaging Eq. (B.18) with respect to the white noise process and stochastic
resetting gives

∂ pr(x, t)
∂ t

= D
∂ 2 pr(x, t)

∂x2 +
1
γ

∂V ′(x)pr(x, t)
∂x

+ r[σ0(x)− pr(x, t)]. (B.19)

C2. Poisson processes

In deriving the extended Itô’s lemma, we combined stochastic Itô calculus with a
stochastic representation of a Poisson processes. In this appendix we provide some
mathematical background regarding the latter, see also Sect. 3.6.. Consider a se-
quence τ1,τ2, . . . of independent exponential random variables with the same mean
1/λ :

P[τn ∈ [τ,τ +dτ]] = λe−λτ dτ, `≥ 1. (B.20)

Introduce the jump times T̂n = ∑
n
k=1 τn. The Poisson process N(t) is a Markov pro-

cess that counts the number of jumps occurring in the interval [0, t]. In other words,

N(t) = n, T̂n ≤ t < T̂n+1. (B.21)

Note that N(t) is defined to be right-continuous, limε→0+ N(t+ε)=N(t). In particu-
lar, N(T̂−n ) = n−1 whereas N(T̂n) = n. This is illustrated in Fig. 7.6. The probability
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N(t)

t
T1 T2 T3 T4

Fig. 7.6: One path of a Poisson process N(t), illustrating that it is right-continuous. Jumps occur at
the times T̂`, `≥ 1.

distribution of the Poisson process is

P[N(t) = n] = Pn(t)≡
(λ t)ne−λ t

n!
. (B.22)

Moreover, N(t + s)−N(s), which is the number of jumps in the time interval (s, t +
s] has the same distribution as N(t) so the Poisson process is time homogeneous.
Introducing the moment generating function

G(z, t) = ∑
n≥0

znPn(t) = e(z−1)λ t , (B.23)

we deduce that

E[N(t)] =
∂G(z, t)

∂ z

∣∣∣∣
z=1

= λ t, (B.24)

and

E[N(t)(N(t)−1)] =
∂ 2G(z, t)

∂ z2

∣∣∣∣
z=1

= (λ t)2. (B.25)

In particular, Var[N(t)] = λ t. Moreover, defining the infinitesimal dN(t) = N(t +
dt)−N(t) and using the fact that the Poisson process is time homogeneous, we
have

E[dN(t)] = λdt. (B.26)
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Let f be an arbitrary bounded function on Z. Suppose that N(t) = n. Using tele-
scoping we have

f (N(t))− f (0) =
n

∑
k=1

[ f (k)− f (k−1)] =
n

∑
k=1

[ f (N(T̂k))− f (N(T̂k−1))]

=
n

∑
k=1

[ f (N(T̂k−1)+1)− f (N(T̂k−1))]

=
∞

∑
k=1

∫ t

0
[ f (N(s−)+1)− f (N(s−))]δ (s− T̂k)ds, (B.27)

which is independent of the particular value n. Using the fact that

∫ t

s

(
∞

∑
k=1

δ (τ− T̂k)

)
dτ = N(t)−N(s), (B.28)

we have

f (N(t)) = f (0)+
∫ t

0
[ f (N(s−)+1)− f (N(s−))]dN(s), (B.29)

with

dN(τ) =
∞

∑
k=1

δ (τ− T̂k)dτ. (B.30)
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