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Chapter 13
Self-organization and assembly of cellular
structures

A. Mean field theory for interacting particle systems

Large systems of interacting particles arise in a wide range of applications in the
natural and social sciences. For example, in physics the particles could represent
electrons or ions in a plasma, molecules in passive or active fluids, or galaxies in a
cosmological model. On the other hand, particles in biological applications tend to
be micro-organisms such as cells or bacteria that can exhibit non-trivial aggregation
phenomena such as motility-based phase separation (see Sect. 15.7). Finally, in eco-
nomics or social sciences, particles typically represent individual “agents”. A major
challenge is how to reduce the complexity of such systems. A classical approach is
to derive a macroscopic model that provides a continuous description of the dynam-
ics in terms of global densities evolving according to non-linear partial differential
equations. Such kinetic formulations date back to the foundations of statistical me-
chanics and the Boltzmann equation of dilute gases interacting via direct collisions.
In recent years, however, much of the focus has been on the mean field limit of par-
ticles with long range or collisionless interactions. Two paradigmatic examples are
interacting Brownian particles in the overdamped regime and the Kuramoto model
of coupled phase oscillators (see Sect. 15.5).

The classical Dean-Kawasaki (DK) equation is a stochastic partial differential
equation (SPDE) that describes fluctuations in the global density of N over-damped
Brownian particles with positions X j(t) ∈ Rd at time t [21, 31]. Within the con-
text of non-equilibrium statistical physics, the DK equation is commonly combined
with dynamical density functional theory (DDFT) in order to derive hydrodynamical
models of interacting particle systems [37, 4, ?, 61]. It is an exact equation for the
global density (or empirical measure) in the distributional sense, and plays an im-
portant role in the stochastic and numerical analysis of interacting particle systems
[23, 32, 33, 24, 25, 27, 16]. There is also considerable mathematical interest in the
rigorous stochastic analysis of the mean field limit N→ ∞ for overdamped Brown-
ian particles with weak interactions, see for example Refs. [43, 29, 46, 13, 14]. In
particular, if the initial positions of the N particles are independent and identically
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4 13 Self-organization and assembly of cellular structures

distributed, then for a wide range of systems it can be proven that ρ converges in
distribution to the solution of the McKean-Vlasov (MV) equation [39]; the latter is a
nonlocal nonlinear Fokker-Planck (FP) equation for the mean field density. The in-
teracting particle system is said to satisfy the propagation of chaos property. The MV
equation can also be derived directly from the DK equation by taking expectations
with respect to the independent white noise processes and imposing a mean field
ansatz. The MV equation is of interest in its own right, since it can support mul-
tiple stationary solutions and associated phase transitions [54, 55]. This has been
explored in various configurations, including double-well confinement and Curie-
Weiss (quadratic) pairwise interactions on R [22, 20, 45], and interacting particles
on a torus [15, 11]. A well-known example of the latter is the stochastic Kuramoto
model of interacting phase oscillators with sinusoidal coupling and quenched disor-
der due to the random distribution of natural frequencies [34, 53, 1]. The well-known
continuum model for the density of phase oscillators [49, 52, 17, 18] is precisely the
MV equation for the global density in the mean field limit N→ ∞, whose existence
can be proven rigorously using propagation of chaos [19].

A.1 Weakly interacting Brownian particles and the McKean-Vlasov
equation

Consider N overdamped Brownian particles in Rd . Let X j(t) ∈ Rd denote the po-
sition of the jth particle at time t, j = 1, . . . ,N. We assume that the particles are
subject to a common external conservative force F(x) = −∇V (x) and interact via
a pairwise potential K. That is, the force on a particle at x due to a particle at y is
−∇K(x−y), where differentiation is with respect to x. The particle positions X j(t)
evolve according to the SDE1

dX j(t) =−
1
γ

[
∇V (X j(t))+

1
N

N

∑
k=1

∇K(X j(t)−Xk(t))
]

dt +
√

2DdW j(t) (A.1)

where W j is a vector of independent Wiener processes. Following the “hydrody-
namic” formulation of Ref. [21], we define the global density (or empirical mea-
sure)

ρ(x, t) =
1
N

N

∑
j=1

δ (x−X j(t)), (A.2)

and introduce an arbitrary smooth test function f (x) of compact support. It follows
that

1
N

N

∑
j=1

f (X j(t)) =
∫
Rd

ρ(x, t) f (x)dx, (A.3)

1 In the original formulation of Ref. [21] the interaction potential is not scaled by a factor 1/N and
the global density is taken to be ρ(x, t) = ∑

N
j=1 δ (x−X j(t)). It is necessary to include the factor

1/N in order to apply a mean field ansatz.
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and [∫
Rd

dx f (x)
∂ρ(x, t)

∂ t

]
dt =

1
N

N

∑
j=1

d f (X j(t)).

Using Itô’s lemma (see Sect. 2.2), we find that∫
Rd

dx f (x)
∂ρ(x, t)

∂ t
(A.4)

=
∫
Rd

dx
[√

2D∇ f (x)
N

·
N

∑
j=1

ρ j(x, t)ξ j(t)+ρ(x, t)
(

D∇2 f (x)−∇ f (x) ·V [x, t,ρ]
)
,

where ρ j(x, t) = δ (x−X j(t)), dW j(t) = ξ j(t)dt, and

V [x, t,ρ] = 1
γ

[
∇V (x)+

∫
Rd

dyρ(y, t)∇K(x−y)
]
. (A.5)

Integrating by parts the various terms involving derivatives of f and using the fact
that f is arbitrary yields the following SPDE for ρ:

∂ρ(x, t)
∂ t

=−
√

2D
N2

N

∑
j=1

∇ ·
[

ρ j(x, t)ξ j(t)
]
+D∇2

ρ(x, t)+∇ ·
(

ρ(x, t)V [x, t,ρ]
)
.

(A.6)

As it stands, equation (A.6) is not a closed equation for ρ due to the noise terms.
Following Ref. [21], we introduce the space-dependent Gaussian noise term

ξ (x, t) =− 1
N

N

∑
j=1

∇ ·
[

ρ j(x, t)ξ j(t)
]
, (A.7)

with zero mean and the correlation function

〈ξ (x, t)ξ (y, t ′)〉= δ (t− t ′)
N2

N

∑
j=1

∇x ·∇y

(
ρ j(x, t)ρ j(y, t)

)
.

Since ρ j(x, t)ρ j(y, t) = δ (x−y)ρ j(x, t), it follows that

〈ξ (x, t)ξ (y, t ′)〉= 1
N

δ (t− t ′)∇x ·∇y

(
δ (x−y)ρ(x, t)

)
.

Finally, we introduce the global density-dependent noise field

ξ̂ (x, t) =
1√
N
∇ ·
(

η(x, t)
√

ρ(x, t)
)
, (A.8)

where η(x, t) is a global white noise field whose components satisfy
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〈ησ (x, t)ησ ′(y, t ′)〉= δ (t− t ′)δ (x−y)δσ ,σ ′ . (A.9)

It can be checked that the Gaussian noises ξ and ξ̂ have the same correlation func-
tions and are thus statistically identical. We thus obtain the classical DK equation
[21, 31]

∂ρ(x, t)
∂ t

=

√
2D
N

∇ ·
[√

ρ(x, t)η(x, t)
]
+D∇2

ρ(x, t)+∇ ·
(

ρ(x, t)V [x, t,ρ]
)

(A.10)

Although equation (A.10) is exact in the weak sense, it is highly singular.
Moreover, averaging with respect to the Gaussian white noise processes results
in a moment closure problem for the one-particle density 〈ρ〉. That is, setting

p(x, t) =
〈

ρ(x, t)
〉

, we have

∂ p(x, t)
∂ t

= D∇2 p(x, t)+
1
γ
∇ ·
(

p(x, t)∇V (x)
)

+
1
γ
∇ ·
(∫

Rd
∇K(x−y)

〈
ρ(x, t)ρ(y, t)

〉)
. (A.11)

As it stands, p(x, t) couples to the two-point correlation function, which in turn
couples to the three-point correlation function etc. Therefore, we now take the ther-
modynamic limit N→ ∞ under the mean field ansatz〈

ρ(x, t)ρ(y, t)
〉
=

〈
ρ(x, t)

〉〈
ρ(y, t)

〉
= p(x, t)p(y, t). (A.12)

This yields the deterministic MV equation

∂ p(x, t)
∂ t

= D∇2
φ(x, t)+∇ ·

(
p(x, t)V [x, t, p]

)
. (A.13a)

with

V [x, t, p] =
1
γ

[
∇V (x)+

∫
Rd

dy p(y, t)∇K(x−y)
]
. (A.13b)

The derivation of classical MV equation [39], and the validity of the mean field
ansatz can be proven using propagation of chaos [43, 29, 46, 13, 14]. The latter is
essentially a version of the law of large numbers, so that simulations for large but
finite N generate macroscopic quantities that are consistent with solutions to the
deterministic MV equation up to O(1/

√
N) errors.
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A.2 Stationary solutions of the 1D McKean-Vlasov equation

A classical result in statistical physics is that for a finite system of overdamped
Brownian particles subject to conservative forces, the corresponding linear Fokker-
Planck (FP) equation has a unique stationary solution given by the Boltzmann dis-
tribution. More specifically, the joint probability density p(x1, . . . ,xN , t) evolves ac-
cording to the multivariate FP equation

∂ p
∂ t

= D
N

∑
j=1

∇2
j p+

1
γ

N

∑
j=1

∇ j · (∇ jU(x1, . . . ,xN)p) , (A.14)

where ∇ j indicates differentiation with respect to x j, and

U(x1, . . . ,xN) =
N

∑
j=1

V (x j)+
1

2N

N

∑
j,k=1

K(x j−xk). (A.15)

equation (A.14) has the unique stationary solution

p = Z−1e−βU , Z =
∫ [ N

∏
j=1

dx j

]
e−βU(x1,...,xN), (A.16)

with β = 1/(kBT ). (We are assuming that Z < ∞ for the given choice of potentials
K and V .) The existence of a unique stationary density for the finite system re-
flects the fact that the dynamics is ergodic. However, ergodicity may break down in
the thermodynamic limit N→ ∞, resulting in the coexistence of multiple stationary
states and their associated phase transitions. This has been explored for an infinite
system of interacting Brownian particles using the MV equation. (A.13) [54]. Ex-
amples include double-well confinement and Curie-Weiss (quadratic) interactions
on R [22, 20, 45], and interacting particles on a torus [15, 11]. In the specific case
of the Curie-Weiss potential K(x−y) = λ (x−y)2/2, the coupling term in the SDE
(A.1) becomes−λ (X j(t)−X(t)) where X(t) = N−1

∑
N
k=1 Xk(t). It is an example of

a cooperative coupling that tends to make the system relax towards the “center of
gravity” of the multi-particle ensemble. If V (x) is given by a multi-well potential
then there is competition between the cooperative interactions and the tendency of
particles to be distributed across the different potential wells according to the clas-
sical Boltzmann distribution. Here we explore stationary solutions by considering a
1D version of the MV equation (A.13) with Curie-Weiss coupling:

∂ p(x, t)
∂ t

= D
∂ 2 p(x, t)

∂x2 +
∂

∂x

(
p(x, t)V [x, t, p]

)
, (A.17)

with

V [x, t, p] =
1
γ

[
V ′(x)+λ

∫
∞

−∞

(x− y)p(y, t)dy
]
. (A.18)
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The steady state version of equation (A.17) is J′0(x) = 0 ,where

J0(x) :=−D
∂ p0(x)

∂x
−βDp0(x)

(
V ′(x)+λ

∫
∞

−∞

(x− y)p0(y)dy
)
.

(We use the subscript 0 to indicate no resetting.) The integral term reduces to λ (x−
〈y〉) with 〈y〉 =

∫
∞

0 yp0(y)dy. Suppose, for the moment, that 〈y〉 = ` for some fixed
`, which then acts as a parameter of the density p0. The normalizability of p0(x)
implies that J0(±∞) = 0 and so J0(x) = 0 for all x. It follows that, for fixed `, the
stationary density is given by a Boltzmann distribution:

p0 = p0(x;`) = Z(`)−1 exp
(
−β [V (x)+λx2/2− `λx]

)
. (A.19)

The factor Z(`) ensures the normalization
∫

∞

0 p0(x;`)dx = 1. The unknown param-
eter ` is determined by imposing the self-consistency condition

`= m0(`)≡
∫

∞

−∞

xp0(x;`)dx. (A.20)

The number of equilibrium solutions is then equal to the number of solutions of
equation (A.20). First, consider the quadratic confining potential V (x) = νx2/2, ν >
0. We have

Z(`) =
∫

∞

−∞

e−β [(ν+λ )x2/2−`λx]dx =

√
2π

β [ν +λ ]
eβ`2λ 2/2[ν+λ ], (A.21)
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Fig. 13.1: Stationary solution of the 1D McKean-Vlasov equation (A.17) for V (x) = x4/4− x2/2.
Plot of the first moment m0(`) as a function of ` and various inverse temperatures β . The nonzero
intercepts with the diagonal determine the positive definite solution `0. We also take λ = 1.
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and equation (A.20) becomes

`= Z(`)−1
∫

∞

0
xe−β [(ν+λ )x2/2−`λx]dx =

1
λβ

∂ logZ(`)
∂`

=
`λ

ν +λ
. (A.22)

It follows that `= 0 and

p0(x;0) =

√
β [ν +λ ]

2π
exp
(
−β (ν +λ )x2/2

)
. (A.23)

Hence, the interactions simply modify the effective strength of the quadratic poten-
tial.

The situation is more complicated when V (x) has at least two minima, because
the tendency of the Boltzmann distribution to localize around both minima competes
with the cooperative effects of the Curie-Weiss potential. As an example, consider
the double-well potential V (x) = x4/4− x2/2. Although it is no longer possible
to analytically solve the corresponding self-consistency equation (A.20), one can
prove that there exists a phase transition at a critical temperature Tc such that `= 0
for T > Tc and ` = ±`0 6= 0 for T < Tc [22, 20, 45]. This is illustrated in Fig.
13.1 by plotting the first moment function m(`) for different values of β . We find
numerically that βc ≈ 2 when λ = 1, which is consistent with the critical point
obtained in Refs. [22, 20].

A.3 Dynamical density functional theory (DDFT)

One of the crucial assumptions of mean field theory is that the particles are weakly
interacting, In particular, the pairwise interaction potential K in equation (A.1) is
scaled by the factor 1/N. In the absence of this scaling, equation (A.11) becomes

∂u(x, t)
∂ t

= D∇2u(x, t)+
1
γ
∇ ·
(

u(x, t)∇V (x)
)

+
1
γ
∇ ·
(∫

Rd
∇K(x−y)

〈
ρ(x, t)ρ(y, t)

〉)
, (A.24)

where

u(x, t) = 〈ρ(x, t)〉=

〈
N

∑
j=1

δ (x−X j(t))

〉
. (A.25)

The exact mean field limit no longer exists. However, one can use an alternative
method to achieve moment closure of equation (A.11) for the one-body density,
which is known as dynamical density functional theory (DDFT) [37, 4, ?, 61]. A
crucial assumption of DDFT is that the relaxation of the system is sufficiently slow
such that the pair correlation function can be equated with that of a correspond-
ing equilibrium system at each point in time [61]. This allows one to approximate
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equation (A.24) by the closed equation

∂u(x, t)
∂ t

=−∇ ·J(x, t), (A.26)

where

J(x, t) =−D
{
∇u(x, t)+βu(x, t)∇[V (x)+µ

ex(x, t)]
}
, (A.27)

Here

µ
ex(x, t) =

δFex[u(x, t)]
δu(x, t)

, (A.28)

and Fex[u] is the equilibrium excess free energy functional with the equilibrium
density profiles replaced by non-equilibrium ones. One of the features of DDFT is
that Fex[u] is independent of the actual external potential. Note that equation (A.26)
is a version of the generalized Fick’s law derived in Box 13A using linear response
theory.

A.4 McKean-Vlasov equation for the classical Kuramoto model

One of the most studied interacting particle systems is the Kuramoto model of
weakly-coupled, near identical limit-cycle oscillators with a sinusoidal phase in-
teraction function [34, 53, 1]. The deterministic version of the model takes the form
of a system of nonlinear phase equations

dθ j

dt
= ω j +

λ

N

N

∑
k=1

sin(θk−θ j), (A.29)

where θ j(t) ∈ [0,2π] is the phase of the jth oscillator with natural frequency ω j,
and λ ≥ 0 is the coupling strength. The frequencies ω j are typically assumed to
be distributed according to a probability density g(ω) with (i) g(−ω) = g(ω) and
(ii) g(0) ≥ g(ω) for all w ∈ [0,∞). Without loss of generality, one can always take
g(ω) to have zero mean by going to a rotating frame if necessary. One method
for investigating the collective behavior of the Kuramoto model is to assume that
it has a well-defined mean field limit N → ∞ involving a continuum of oscillators
distributed on the circle [52, 17, 18]. Let σ0(θ , t,ω) denote the fraction of oscillators
with natural frequency ω that lie between θ and θ +dθ at time t with∫ 2π

0
σ0(θ , t,ω)dθ = 1. (A.30)

More precisely, σ0(θ , t,ω) is a population density that is conditioned on the natural
frequency of the oscillators, see below. Since the total number of oscillators is fixed,
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σ evolves according to the continuity or Liouville equation

∂σ0

∂ t
=− ∂

∂θ
(σ0v0), (A.31)

where

v0(θ , t,ω) = ω +λ

∫ 2π

0
dθ
′
∫

∞

−∞

dω
′ sin(θ ′−θ)σ0(θ

′, t,ω ′)g(ω ′). (A.32)

It is also possible to consider a stochastic version of the Kuramoto model [49]. If
Θ j(t) ∈ [0,2π) denotes the stochastic phase of the jth oscillator at time t, then the
corresponding SDE is

dΘ j(t) =
[

ω j +
λ

N

N

∑
k=1

sin(Θk(t)−Θ j(t))
]

dt +
√

2DdWj(t) (A.33)

for j = 1, . . . ,N, where Wj(t) is an independent Wiener process. The corresponding
continuum model now takes the form of a nonlinear FP equation on the circle:

∂σ0

∂ t
=− ∂

∂θ
(σ0v0)+D

∂ 2σ0

∂θ 2 . (A.34)

An alternative interpretation of the SDE (A.33) is a system of Brownian parti-
cles on an N-torus with pairwise coupling and quenched disorder due to the random
distribution of natural frequencies. It follows that Eq. (A.34) is equivalent to the
corresponding MV equation for the global density in the mean field limit. The ex-
istence of the latter has been proven rigorously using propagation of chaos [19],
and has been extended to a wider class of interacting particle systems on the torus
[11, 46]. The mean field limit also applies to the deterministic Kuramoto model in
the case of an ensemble of initial conditions. The next step is to introduce the global
density or empirical measure

ρ(θ , t,ω) =
1
N

N

∑
j=1

δ (θ −Θ j(t))δ (ω−ω j). (A.35)

It is important to note that the stochastic density ρ is distinct from the determin-
istic density σ0 for the noiseless Kuramoto model. Moreover, the former has the
normalization ∫ 2π

0
ρ(θ , t,ω)dθ =

1
N

N

∑
j=1

δ (ω−ω j). (A.36)

Taking expectations with respect to the quenched random frequencies, we have
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E[ρ(θ , t,ω)] =
1
N

N

∑
j=1

δ (θ −Θ j(t))E[δ (ω−ω j)]

=
g(ω)

N

N

∑
j=1

δ (θ −Θ j(t)), (A.37)

which implies that
∫ 2π

0 E[ρ(θ , t,ω)]dθ = g(ω). Consider an arbitrary smooth test
function f : [0,2π]×R→ R with

f (Θ j(t),ω j) =
∫ 2π

0
dθ

∫
R

dωρ j(θ , t,ω) f (θ ,ω), (A.38)

and [∫ 2π

0
dθ

∫
R

dω f (θ ,ω)
∂ρ j(θ , t,ω)

∂ t

]
dt = d f (Θ j,ω j).

Using Itô’s lemma along analogous lines to the case of a Brownian gas, we find that∫ 2π

0
dθ

∫
R

dω f (θ ,ω)
∂ρ(θ , t,ω)

∂ t

=
∫ 2π

0
dθ

∫
R

dω

[
∂θ f (θ ,ω)

√
2D
N

N

∑
j=1

ρ j(θ , t,ω)ξ j(t)

+ρ(θ , t,ω)

(
D∂

2
θ f (θ ,ω)+∂θ f (θ ,ω)V [θ , t,ω,ρ]

)
,

where

V [θ , t,ω,ρ] = ω +λ

∫ 2π

0
dθ
′
∫
R

dω
′
ρ(θ ′, t,ω ′)sin(θ ′−θ). (A.39)

Integrating by parts the various terms involving derivatives of f and using the fact
that f is arbitrary yields the following SPDE for ρ:

∂ρ(θ , t,ω)

∂ t
=−

√
2D
N2

N

∑
j=1

∂

∂θ

[
ρ j(θ , t,ω)ξ j(t)

]
+D

∂ 2

∂θ 2 ρ(θ , t,ω)

− ∂

∂θ

(
ρ(θ , t,ω)V [θ , t,ω,ρ]

)
(A.40)

Following along similar lines to the derivation of equation (A.10), we introduce
the white noise term

ξ (θ , t,ω) =− 1
N

N

∑
j=1

∂θ

[
ρ j(θ , t,ω)ξ j(t)

]
, (A.41)

which has zero mean and correlation function
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〈ξ (θ , t,ω)ξ (θ ′, t ′,ω ′)〉= 1
N2 δ (t− t ′)

N

∑
j=1

∂θ ∂θ ′

(
ρ j(θ , t,ω)ρ j(θ

′, t,ω ′)
)
.

Since ρ j(θ , t,ω)ρ j(θ
′, t,ω ′) = δ (θ −θ ′)δ (ω−ω ′)ρ j(θ , t,ω), it follows that

〈ξ (θ , t,ω)ξ (θ ′, t ′,ω ′)〉= 1
N

δ (t− t ′)∂θ ∂θ ′

(
δ (θ −θ

′)δ (ω−ω
′)ρ(θ , t,ω)

)
.

Finally, we introduce the global density-dependent noise field

ξ̂ (θ , t,ω) =
1√
N

∂θ

(
η(θ , t,ω)

√
ρ(θ , t,ω)

)
, (A.42)

where η(θ , t,ω) is a global white noise field whose components satisfy

〈η(θ , t,ω)η(θ ′, t ′,ω ′)〉= δ (t− t ′)δ (θ −θ)δ (ω−ω
′). (A.43)

It can be checked that the Gaussian noises ξ and ξ̂ have the same correlation func-
tions and are thus statistically identical. We thus obtain the generalized DK equation
for the stochastic Kuramoto model with resetting:

∂ρ(θ , t,ω)

∂ t
=

√
2D
N

∂

∂θ

[√
ρ(θ , t,ω)η(θ , t,ω)

]
+D

∂ 2

∂θ 2 ρ(θ , t,ω)

− ∂

∂θ

(
ρ(θ , t,ω)V [θ , t,ω,ρ]

)
. (A.44)

As in the case of the DK equation (A.10), taking expectations with respect to the
white noise processes results in a moment closure problem. However, assuming a
mean field ansatz in the thermodynamic limit leads to the following deterministic

MV equation for the mean field φ(θ , t,ω) =

〈
ρ(θ , t,ω)

〉
:

∂φ(θ , t,ω)

∂ t
= D

∂ 2

∂θ 2 φ(θ , t,ω)− ∂

∂θ

(
φ(θ , t,ω)V [θ , t,ω,φ ]

)
(A.45)

As in the case of interacting Brownian particles, a stationary solution of the MV
equation (A.45) has to be determined self-consistently. Now, however, the self-
consistency condition involves the first circular moment

Z1(t) = R(t)eiψ(t) :=
∫ 2π

0
dθ

∫
∞

−∞

dω eiθ
φ(θ , t,ω), (A.46)

rather than the first moment `= 〈x〉 for the Curie-Weiss potential, say. Substituting
equation (A.46) into the MV equation (A.45) gives
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∂φ(θ , t,ω)

∂ t
= D

∂ 2φ(θ , t,ω)

∂θ 2

− ∂

∂θ

[(
ω +λR(t)sin(ψ(t)−θ(t))

)
φ(θ , t,ω)

]
. (A.47)

The amplitude R(t) is a measure of the degree of synchronization with R = 1
signifying complete synchrony and R = 0 corresponding to the incoherent state
φ(θ , t,ω)= g(ω)/2π , which is a solution of equation (A.45). In principle, one could
now proceed by solving the time-independent version of (A.47) for fixed Z1 and then
substituting the resulting stationary solution φZ1(θ ,ω) into equation (A.46) to de-
termine Z1. However, the calculation of φZ1 is nontrivial since we no longer have a
stationary Boltzmann distribution on the circle.

An alternative representation of the MV equation can be obtained by considering
the Fourier series expansion

φ(θ , t,ω) =
g(ω)

2π

(
1+

∞

∑
m=1

[
φm(ω, t)eimθ + c. c.

])
,

(A.48)

with

φm(ω, t) = 〈e−imθ 〉 :=
∫ 2π

0
e−imθ

φ(θ , t,ω)
dθ

2π
. (A.49)

Solving the initial value problem for φ is then equivalent to solving an infinite hier-
archy of equations for the coefficients φm:

∂φm

∂ t
+ imωφm +

λm
2

[φm+1Z1−φm−1Z∗1 ] , (A.50)

with
Z1(t) =

∫
∞

−∞

g(ω)φ ∗1 (ω, t)dω. (A.51)
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B. Active particles

A major topic of current interest within the general field of non-equilibrium systems
is active matter, which is typically described in terms of a collection of elements
that consume energy in order to move or to exert mechanical forces [47, 48, 51, 8].
Examples include animal flocks or herds [2], motility-based phase separation [12]
(see Sect. 15.7), bacterial suspensions [26, 30], synthetically manufactured self-
propelled colloids [42, 44, 9], and components of the cellular cytoskeleton (see
Chap. 14). In many cases the individual particles have an intrinsic orientation and
can exhibit long-range orientational interactions mediated by some sensing mech-
anism or by coupling hydrodynamically to the surrounding medium [56]. In or-
der to gain theoretical insights into the behavior of active matter, it is often use-
ful to consider simplified models of the individual particles, in particular, a run-
and-tumble particle (RTP), an active Brownian particle (ABP) [51], or an active
Ornstein-Uhlenbeck particle (AOUP) [38, 60]. These models provide an analytically
tractable framework for studying self-organizing phenomena such as the accumula-
tion of active particles at walls, which can occur even if inter-particle interactions
are ignored [8]. Since RTP particles are covered extensively in Sect. 10.4, we focus
here on the analysis of ABPs and AOUPs.

B.1 Active Brownian particle confined to a semi-infinite channel

Let X(t) ∈ R2 and Θ(t) ∈ [0,2π] denote the position and orientation of an active
particle in two dimensions. In the case of an RTP, the dynamics is described by the
stochastic equation

dX
dt

= v0n(Θ(t)), n(θ) = (cosθ ,sinθ), (B.1)

where v0 is the speed of the particle and the orientation Θ(t) randomly switches
between a finite set of states {θ1, . . . ,θn} according to a Markov chain. Mathemat-
ically speaking, equation (B.1) is an example of a velocity jump process, see Sect.
10.4. (In one dimension (1D), equation (B.1) reduces to a two state velocity jump
process, in which the particle switches between the velocity states ±v0.) Turning to
a 2D model of an ABP, the dynamics evolves according to a stochastic differential
equation (SDE) of the form [5]

dX(t) = v0n(θ(t))+
√

2DdW(t), dΘ(t) =
√

2DdW (t), (B.2)

where W(t) = (W x(t),W y(t)). The stochastic variables W x(t),W y(t),W (t) are inde-
pendent Wiener processes, D is the translational diffusivity, and D is the rotational
diffusivity (with units of inverse time).
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x = 0 x = L

time t

(i)

(ii)

(iii)

B0κ0 x

t

y

Fig. 13.2: Schematic representation of the time evolution of the position x and the velocity direction
(indicated by arrows) of an ABP confined to an infinitely long 2D channel of width L. (i) Motion
within the bulk. (ii) The particle hits the impermeable wall at x = 0 and remains stuck at the wall
(in the bound state B0) until (iii) rotational diffusion allows it to escape back into the bulk domain.
Analogous behavior occurs at the right-hand wall.

Both models exhibit accumulation at the boundaries of a confinement domain,
even at the single particle level (see Ref. [3] for an RTP in an interval and Refs.
[35, 57, 58, 59] for an ABP in a 2D channel.). This is due to the fact that whenever a
particle hits a hard wall, it becomes stuck by pushing on the boundary until a tumble
event reverses its direction. At the multi-particle level this results in a pressure being
exerted on the confining walls. An equivalent way to formulate the accumulation
process is in terms of a sticky boundary condition. That is, whenever the particle
collides with a wall, it remains attached to the wall for a random time interval that is
determined by the tumbling dynamics. If the escape time back into the bulk is zero
then the boundary is totally reflecting, whereas if the particle never escapes then the
boundary is totally absorbing. The intermediate case is known as a sticky boundary
condition. Sticky boundary conditions also arise within the context of the growth
and shrinkage of polymer filaments such as microtubules (Sect. 4.2) and actin-rich
cytonemes (Sect. 14.5) in confined 1D domains [62, 41, 10].

Here we consider an ABP confined to a 2D channel Ω ⊂ R2 of width L in the x
direction and of infinite extension in the y direction. Let X(t)∈Ω and Θ(t)∈ [0,2π]
denote the position and orientation of the particle at time t. These stochastic vari-
ables are taken to evolve according to the SDE (B.2). For simplicity, we will neglect
translational diffusion by setting D = 0. Let p(x,y,θ , t) denote the probability den-
sity for the triplet (X(t),Y (t),Θ(t)). The density evolves according to the Fokker-
Planck (FP) equation
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∂ p(x,θ , t)
∂ t

=−v0n(θ) ·∇p(x,θ , t)+D
∂ 2 p(x,θ , t)

∂θ 2 , x∈Ω , θ ∈ [0,2π]. (B.3)

Given the translation invariance in the y direction, we assume that p is independent
of y so that the FP equation reduces to the quasi-one dimensional form:

∂ p(x,θ , t)
∂ t

=−v0 cosθ
∂ p(x,θ , t)

∂x
+D

∂ 2 p(x,θ , t)
∂θ 2 , x ∈ (0,L), θ ∈ [0,2π].

(B.4a)
The particle will hit the wall at x = 0 if it is traveling to the left (cosθ < 0), whereas
it will hit the wall at x = L if it is traveling to the right (cosθ > 0). As soon as
it hits the wall its linear velocity drops to zero but its orientation will continue to
diffuse. The particle remains stuck at the wall until the orientation crosses one of
the vertical directions, after which it reenters the bulk domain, see Fig. 13.2. Let
Q0(θ , t) denote the probability density that the particle is attached to the wall at
x = 0 and has orientation θ (cosθ < 0). Then

∂Q0(θ , t)
∂ t

= D
∂ 2Q0(θ , t)

∂θ 2 − v0 cosθ p(0,θ , t), θ ∈I− := (π/2,3π/2), (B.4b)

which is supplemented by the absorbing boundary conditions Q0(±π/2, t) = 0,
which signal the reinsertion of the particle into the bulk domain. The absorbing
boundary conditions mean that the net flux between the left-hand wall and the bulk
is (for cosθ > 0)

v0 cosθ p(0,θ , t) = D
∂Q0(π/2, t)

∂θ
δ (θ −π/2+ ε)

−D
∂Q0(−π/2, t)

∂θ
δ (θ +π/2− ε), (B.4c)

where 0 < ε � 1. The small parameter ε is introduced to avoid the singularities
at ±θ = π/2. However, the resulting solution is well defined in the limit ε → 0.
Similarly, the probability density QL(θ , t) that the particle is attached to the wall at
x = L and has orientation θ (cosθ > 0) evolves according to the equation

∂QL(θ , t)
∂ t

=D
∂ 2QL(θ , t)

∂θ 2 +v0 cosθ p(L,θ , t), θ ∈I+ := (−π/2,π/2), (B.4d)

with QL(±π/2, t) = 0 and (for cosθ < 0)

v0 cosθ p(L,θ , t) =−D
∂QL(π/2, t)

∂θ
δ (θ −π/2− ε)

+D
∂QL(−π/2, t)

∂θ
δ (θ +π/2+ ε). (B.4e)
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B.2 Steady-state analysis and two-way diffusion

In the case of an ABP confined to a 2D channel, the resulting boundary value prob-
lem (BVP) for the steady-state is non-trivial, since the boundary conditions at the
channel walls are only defined on the orientation half spaces θ ∈I− :=(π/2,3π/2)
and θ ∈I+ := (−π/2,π/2). That is, the BVP is an example of a so-called two-way
diffusion problem for which classical spectral methods do not apply [28, 6, 7], We
will describe a hybrid analytical/numerical method recently developed to solve the
two-way diffusion problem for the steady-state density [35, 57, 58, 59]. The steady-
state equations take the form

D
∂ 2 p(x,θ)

∂θ 2 = v0 cosθ
∂ p(x,θ)

∂x
, x ∈ (0,L), θ ∈ [−π,π], (B.5a)

D
d2Q0(θ)

dθ 2 = v0 cosθ p(0,θ), θ ∈I−, (B.5b)

D
d2QL(θ)

dθ 2 =−v0 cosθ p(L,θ), θ ∈I+, (B.5c)

v0 cosθ p(0,θ) = D
dQ0(π/2)

dθ
δ (θ −π/2+ ε)−D

dQ0(−π/2)
dθ

δ (θ +π/2− ε),

for cosθ > 0 (B.5d)

v0 cosθ p(L,θ) =−D
dQL(π/2)

dθ
δ (θ −π/2− ε)+D

dQL(−π/2)
dθ

δ (θ +π/2+ ε),

for cosθ < 0. (B.5e)

The first step is to introduce the separable solution p(x,θ) = X(x)Θ(θ) into
equation (B.5a), which yields the pair of ODEs

dX
dx

= λX/`, `=
v0

D
, (B.6a)

d2Θ

dθ 2 −λ cosθΘ = 0, Θ(θ) =Θ(θ +2π). (B.6b)

(The separable functions X(x) and Θ(θ) should be distinguished from the stochastic
variables X(t) and Θ(t).) The first equation has the solution eλX/` for a given λ . The
second equation is related to Mathieu’s equation. Since cosθ is an even function
of θ , the eigenfunctions can be partitioned into odd and even subsets. If Θ(θ) is
an eigenfunction corresponding to an eigenvalue λ , then Θ(θ) ≡Θ(θ + π) is an
eigenfunction whose eigenvalue is −λ . The proof is straightforward:

d2Θ(θ)

d2θ
=

d2Θ(θ +π)

d2θ
= λ cos(θ +π)Θ(θ +π) =−λ cosθΘ(θ).

It can also be proven that the non-zero eigenvalues are non-degenerate [28], which
motivates the following ordering of the non-zero eigenvalues: . . . < λ2 < λ1 < 0 <
λ−1 < λ−2 < .. . with λk =−λ−k. The eigenfunctions Θk(θ) satisfy the orthogonal-
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ity relation ∫
π

−π

Θ j(θ)Θk(θ)cosθdθ = δi, jsgn(k), jk 6= 0. (B.7)

In order to establish equation (B.7), consider two distinct eigenvalues λk and λl with
l 6= k. Multiply the eigenvalue equation for Θk by Θ j and multiply the eigenvalue
equation for Θ j by Θk. Subtracting the pair of equations gives

Θ j(θ)
d2Θk(θ)

dθ 2 −Θk(θ)
d2Θ j(θ)

dθ 2 = (λk−λ j)cosθΘ j(θ)Θk(θ). (B.8)

Integrating both sides with respect to θ using integration by parts and periodicity
of the eigenfunctions yields equations (B.7) for k 6= j. This is supplemented by the
normalization

∫
π

−π
Θ 2

k (θ)cosθdθ = sgn(k).
One subtle point is that the set of eigenfunctions {Θk(θ),k 6= 0}with correspond-

ing non-zero eigenvalues λk do not form a complete basis set. This is a consequence
of the fact that the eigenfunctions Θk(θ) satisfy the additional orthogonality rela-
tions ∫

π

−π

Θk(θ)cosθdθ = 0,
∫

π

−π

Θk(θ)cos2
θdθ = 0, k 6= 0. (B.9)

Equations (B.9) follow directly from integrating equation (B.6b). However, there
exists a doubly degenerate zero eigenvalue whose eigenspace is spanned by the
functions u0 = α and û0 = β (x/`− cosθ), where α,β are constants. The latter
eigenfunction is non-separable and is known as the diffusion solution. Inclusion of
this additional pair of eigenfunctions generates a complete basis set, leading to a
general solution of the form

p(x,θ) = α +β (x/`− cosθ)+ ∑
k>0

akeλkx/`
Θk(θ)+ ∑

k<0
akeλk[x−L]/`

Θk(θ). (B.10)

Soluition of two-sided BVP

The next step is to determine the coefficients α,β ,ak by imposing the boundary con-
ditions at the walls. In order to summarize the theory of [57, 58], we. first consider
the simplified boundary conditions

p(0,θ) = v+(θ) for cosθ > 0, p(L,θ) = v−(θ) for cosθ < 0. (B.11)

Let us define the function

v(θ) =
{

v+(θ)−α0 +β0 cosθ , cosθ > 0
v−(θ)−α0−β0(L− cosθ), cosθ < 0 . (B.12)

The coefficients α0,β0 are chosen so that
∫

π

−π
v(θ)cosθdθ = 0=

∫
π

−π
v(θ)cos2 θdθ .

We can then expand v(θ) as
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v(θ) = ∑
k 6=0

a0
kΘk(θ), a0

k = sgn(k)
∫

π

−π

v(θ)Θk(θ)cosθdθ . (B.13)

Introduce the approximate solution

p0(x,θ) = α0 +β0(x/`− cosθ)+ ∑
k>0

a0
keλkx/`

Θk(θ)+ ∑
k<0

a0
keλk[x−L]/`

Θk(θ).

(B.14)
At x = 0 we have

p0(0,θ) = α0−β0 cosθ + ∑
k>0

akΘk(θ)+ ∑
k<0

ake−λkL/`
Θk(θ)

= v(θ)−∑
k<0

a0
k

(
1− e−λkL/`

)
Θk(θ) for cosθ > 0, (B.15a)

Similarly, at x = L we have

p0(L,θ) = α0−β0[L− cosθ ]+ ∑
k>0

akeλkL/`
Θk(θ)+ ∑

k<0
akΘk(θ)

= v(θ)−∑
k>0

a0
k

(
1− eλkL/`

)
Θk(θ) for cosθ < 0. (B.15b)

Thus the leading order approximation p0 satisfies equation (B.5a) but does not ex-
actly match the boundary conditions.

At the next iteration we consider the error ∆ p(1)(x,θ)= p(x,θ)− p0(x,θ), which
satisfies equation (B.5a) together with the boundary conditions

∆ p(1)(0,θ) = v1,+(θ)≡ ∑
k<0

a0
k

(
1− e−λkL/`

)
Θk(θ) for cosθ > 0, (B.16a)

∆ p(1)(L,θ) = v1,−(θ)≡ ∑
k>0

a0
k

(
1− eλkL/`

)
Θk(θ) for cosθ < 0. (B.16b)

We then define the function

v1(θ) =

{
v1,+(θ)−α1 +β1 cosθ , cosθ > 0

v1,−(θ)−α1−β1(L− cosθ), cosθ < 0 , (B.17)

and find new coefficients α1,β1,a1
k . The error ∆ p is then approximated by p1 with

p1(x,θ) = α1 +β1(x/`− cosθ)+ ∑
k>0

a1
keλkx/`

Θk(θ)+ ∑
k<0

a1
keλk[x−L]/`

Θk(θ).

(B.18)
The new error function is ∆ p(2) = p− p0− p1, which is approximated along the
same lines etc.
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Solution of full BVP

So far the analysis has neglected the tumbling dynamics and absorption at the walls,
as determined by the bound state probability densities Q0(θ) and QL(θ). If the
latter were known explicitly then one could determine the functions v±(θ) from the
boundary conditions (B.5d) and (B.5e):

v+(θ) =
A0

`cosθ
δ (θ −π/2+ ε)+

B0

`cosθ
δ (θ +π/2− ε), (B.19a)

v−(θ) =−
AL

`cosθ
δ (θ −π/2− ε)− BL

`cosθ
δ (θ +π/2+ ε), (B.19b)

where

A0,L :=
∂Q0,L(π/2)

∂θ
, B0,L :=−

∂Q0,L(−π/2)
∂θ

. (B.20)

In principle, we now have to deal with the fact that the probability densities Q0(θ)
and QL(θ) are only defined implicitly, since the remaining pair of boundary condi-
tions (B.5b) and (B.5c) depend on p(0,θ) and p(L,θ). Hence, the unknown coeffi-
cients A0,L and B0,L have to be determined self-consistently. However, the symmetry
of the problem implies that A0 = AL = B0 = BL ≡N as there is a balance of fluxes
at both ends [57]. Hence, one can treatN as a global factor that simply acts as a nor-
malization. In Ref. [57], the hybrid numerical/analytical scheme is compared with
direct simulations and found to be in good agreement. Example density profiles are
sketched in Fig. ??.
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Fig. 13.3: Sketch of marginal density p(x) =
∫

π

−π
p(x,θ)dθ as a function of distance x from the

left wall. We take `p = 1 and L = 7. One finds that the enhancement of the bulk density occurs in
a boundary layer of thickness `p/2. (b) Sketch of orientational density Q0(θ) at the left-hand wall
for L = 20.
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Convergence of series solution

A more mathematically rigorous formulation of the solution to a two-sided diffusion
problem can also be developed [58]. In order to avoid the additional complications
of the doubly degenerate zero eigenvalue, consider the slightly modified BVP

D
∂ 2 p(x,θ)

∂θ 2 −κ0 p(x,θ) = v0 cosθ
∂ p(x,θ)

∂x
, x ∈ (0,L), θ ∈ [−π,π], (B.21a)

p(0,θ) = v+(θ) for cosθ > 0, p(L,θ) = v−(θ) for cosθ < 0. (B.21b)

Here κ0 could represent the rate of degradation in the bulk. Introduce the space H
of continuous piecewise, twice-differentiable functions of θ and definie v(·,s), f (·,s)∈
H with

v(θ) =
{

v+(θ), cosθ > 0
v−(θ), cosθ < 0 , f (θ ,s) =

{
f+(θ)≡ p(0,θ), cosθ > 0
f−(θ)≡ p(L,θ), cosθ < 0 . (B.22)

The boundary condition can then be written in the more compact form f (θ) = v(θ)
for all θ ∈ (−π,π). The eigenfunctions {Θk(θ ,s),k 6= 0} with

d2Θ

dθ 2 − [λ cosθ +κ0]Θ = 0, Θ(θ) =Θ(θ +2π). (B.23)

form a complete orthonormal basis set for H when κ0 > 0. (They are now related
to Hill functions [36] rather than Mathieu functions.) This means that we can set
v(θ) = ∑k 6=0 v(0)k Θk(θ) with

v(0)k ≡ sgn(k)
∫

π

−π

v(θ)Θk(θ)cosθdθ . (B.24)

Moreover, the general solution to the above BVP can be written as

p(x,θ) = ∑
k>0

ckeλkx/`
Θk(θ)+ ∑

k<0
ckeλk[x−L]/`

Θk(θ). (B.25)

Following Ref. [58], we now introduce two sets of projection operators. The
first pair Q± projects an element u ∈H onto functions restricted to the domains
θ ∈I±:

Q+u(θ) =
{

u+(θ), cosθ > 0
0 cosθ < 0 , Q−u(θ) =

{
0, cosθ > 0

u−(θ) cosθ < 0 . (B.26)

In order to define the second pair of projection operators P±, we expand an arbitrary
element u ∈H as u(θ) = ∑k 6=0 ukΘk(θ) and set

P+u(θ) = ∑
k>0

ukΘk(θ), P−u(θ) = ∑
k<0

ukΘk(θ). (B.27)
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We now note that the functions f±(θ) can be rewritten as

f+(θ) = [P++P−ML]F(θ), f−(θ) = [P+ML +P−]F(θ), (B.28)

where

F(θ) := ∑
k 6=0

ckΘk(θ), MLF(θ) := ∑
k 6=0

cke−|λk|L/γ
Θk(θ). (B.29)

It follows that the boundary condition becomes

v(θ) =Q+ f+(θ)+Q− f−(θ)

= {Q+[P++P−ML]+Q−[P+ML +P−]}F(θ)

= V F(θ ,s)+W MLF(θ), (B.30)

where V =Q+P++Q−P−, W =Q+P−+Q−P+. Using the operator identity
V +W = (Q++Q−)(P++P−) = I, we obtain the result

v(θ) = (I−WL)F(θ), WL = W −W ML, (B.31)

which can beformally inverted in terms of a Neumann series [58]

F(θ) =
∞

∑
n=0

W n
L v(θ). (B.32)

A non-trivial issue is whether or not the infinite series representation of F(θ)
converges. In terms of the L2 inner product, this is equivalent to the condition
‖WL‖< 1. As discussed by Wagner et al. [58], the norm of WL is difficult to estimate.
However, in practice, one can establish convergence numerically by restricting the
Hilbert space H to the space HN = span{Θk, |k≤N}, that is, the space spanned by
the first 2N eigenfunctions ordered by the magnitude of their corresponding eigen-
values. Modifying the definitions of the projection operators accordingly, one finds
that ‖WN‖ < 1 for values of N up to O(103) with an asymptote suggesting that
limN→∞ ‖WN‖ < 1 (see Fig. 1 of Wagner et al. [58]). It remains to justify approxi-
mating solutions by restricting to the space HN . This is valid provided that the BVP
defined by equations (B.6a), (B.6b) and (B.11) has solutions that are sufficiently
smooth and slowly varying. Since eigenfunctions with larger eigenvalues are faster
varying, it follows that they do not contribute significantly. Assuming that the Neu-
mann series (B.32) is convergent, one can generate a sequence of approximate an-
alytic solutions along analogous lines to Wagner et al. [58]. Let F(n)(θ) denote the
approximation obtained by truncating the series solution at the nth term. It immedi-
ately follows that the zeroth order solution is F(0)(θ) = ∑k 6=0 v(0)k Θk(θ). At the next
level of approximation, the contribution on the right-hand side of equation (B.32) is
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WLv(θ) = [Q+P−+Q−P+]v(θ) =

{
∑k<0 v(0)k Θk(θ), cosθ > 0

∑k>0 v(0)k Θk(θ), cosθ < 0
. (B.33)

Note that that the eigenfunctions {Θk(θ),k < 0} span the set of functions restricted
to the domain cosθ > 0 and the subset {Θk(θ),k > 0} span the set of functions
restricted to the domain cosθ < 0; this is known as the half-range completeness
property [28, 6, 7]. Rewriting WLv(θ) as

WLv(θ) = ∑
k 6=0

v(1)k Θk(θ), θ ∈ [0,2π]; v(1)k (r) =
∫

π

−π

WLΘk(θ)cosθdθ (B.34)

leads to the next level approximation F(1)(θ) = ∑k 6=0[v
(0)
k +v(1)k ]Θk(θ). Iterating the

procedure generates an approximation to arbitrary order n with ck ≈ ∑
n
j=0 v( j)

k .

B.3 Steady-state analysis of a confined active Ornstein-Uhlenbeck
particle (AOUP)

Let X(t)∈Rd denote the position of a freely moving AOUP at time t. In the absence
of an external potential, the corresponding over-damped Langevin equation takes the
form

dX(t)
dt

= V(t)+
√

2Dξ(t), (B.35)

where ξ(t) is a vector of d independent Gaussian white noise processes with first
and second moments

〈ξa(t)〉= 0, 〈ξa(t)ξb(t ′)〉= δa,bδ (t− t ′), (B.36)

D is the passive diffusivity for translational motion and V is a random persistent
velocity that evolves according to the OU process

τ
dV(t)

dt
=−V(t)+

√
2Kη(t). (B.37)

Here η(t) is a vector of Gaussian white noise process,

〈ηa(t)〉= 0, 〈ηa(t)ηb(t ′)〉= δa,bδ (t− t ′), (B.38)

whose components are uncorrelated with ξ(t), τ is a persistence time, and K is an
active diffusivity with K = v2

0τ/d for some characteristic speed v0. It follows that

〈Va(t)〉= 0, 〈Va(t)Vb(t ′)〉= δa,b
v2

0
d

e−|t−t ′|/τ , (B.39)

and
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〈X2(t)〉= 2dDt +2v2
0τ

2
[ t

τ
−1+ e−t/τ

]
. (B.40)

In particular, for t� τ , the ballistic contribution approximately averages to zero and
we have an effective diffusivity Deff = D+K with 〈X2(t)〉 ≈ 2dDefft.

Now suppose that the particle is restricted to a bounded domain Ω ⊂ Rd with a
reflecting boundary ∂Ω . Let p(x,v, t) denote the probability density at time t. The
density evolves according to the Fokker-Planck (FP) equation

∂ p
∂ t

= D∇2
x p−v ·∇x p+

K
τ2∇

2
v p+

1
τ
∇v ·vp, (x,v) ∈Ω ×Rd (B.41)

for a given initial condition p(x,v,0) = p0(x,v) and normalization∫
Ω

dx
∫
Rd

dv p(x,v, t) = 1. (B.42)

Introducing the probability fluxes

Jx(x,v, t) = vp(x,v, t)−D∇x p(x,v, t), (B.43)

Jv(x,v, t) =−
v
τ

p(x,v, t)− K
τ2∇v p(x,v, t). (B.44)

we can express the reflecting boundary condition as

Jx(x,v, t) = 0, (x,v) ∈ ∂Ω ×Rd , (B.45)

and rewrite the FP equation as a conservation equation of the form

∂ p
∂ t

=−∇x ·Jx−∇v ·Jv. (B.46)

Integrating equation (B.46) with respect to x ∈ Ω using the reflecting boundary
condition and setting ρ(v, t) =

∫
Ω

p(x,v, t)dx shows that ρ satisfies the reduced FP
equation

∂ρ

∂ t
=

K
τ2∇

2
vρ +

1
τ
∇v ·vρ, v ∈ Rd . (B.47)

The steady-state solution of the latter is the Gaussian distribution

ρ(v) =
1√

2πv2
0/d

exp
(
− v2

2v2
0/d

)
. (B.48)

Determining the x-dependence of the steady-state solution p(x,v) in the bounded
domain Ω is non-trivial. One way to proceed is to perform a perturbation and
eigenfunction series expansion along the lines of Ref. [60]. The first step is to non-
dimensionalize the FP equation (B.41) by performing the scalings

t̃ =
t
τ
, x̃ =

x
λ
, ṽ =

v
σ
, p̃(x̃, ṽ, t) = p(λ x̃,σ ṽ, t)(λσ)d ,
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where
λ =
√

2Dτ, σ =
√

2K/τ =
√

2v2
0/d. (B.49)

In particular, λ is the typical distance a passive particle diffuses over the persistence
time τ . After dropping the tildes, the FP equation away from boundary takes the
form

∂ p
∂ t

=∇2
x p+∇2

v p+2∇v ·vp−2εv ·∇x p, (B.50)

where

ε =

√
v2

0τ

dD
≡
√

Pe, (B.51)

and Pe is the Péclet number. The latter is the ratio of the rates of active and passive
transport, and characterizes how active the particle is. The next step is to consider
a regular perturbation series expansion of the steady-state solution in the weakly
active regime (small ε):

p(x,v) =
∞

∑
n=0

ε
n p(n)(x,v). (B.52)

Substituting into the time-independent version of the dimensionless FP equation
(B.50) gives

∇2
x p(n)+∇2

v p(n)+2∇v ·vp(n) = 2v ·∇x p(n−1), n≥ 1. (B.53)

Note that p(0) satisfies the closed equation

∇2
x p(0)+∇2

v p(0)+2∇v ·vp(0) = 0, (B.54)

which we assume can be solved explicitly. Further simplification is obtained by per-
forming an eigenfunction expansion with respect to Hermite polynomials Hm, m ≥
0. This follows from the observation that the differential operator Lv ≡∇2

v+2∇v ·v
appearing in equations (B.50) and (B.53) can be mapped to the corresponding oper-
ator of the FP equation for a particle in a harmonic potential. More specifically, we
set (see appendix B of Ref. [60])

p(n)(x,v) =
∞

∑
m1=0

. . .
∞

∑
md=0

C(n)
m (x)e−v2

d

∏
i=1

Hmi(vi), (B.55)

where m = (m1, . . . ,md). The solution of the steady-state boundary-value problem
(BVP) for the full density p(x,v), x ∈ Ω , then reduces to solving a recursive BVP
for the coefficients C(n)

m (x).
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AOUP on a finite interval.

First consider the 1D example of an AOUP on the finite interval x ∈ [−L,L] with a
reflecting boundary at x = ±L. (In unscaled units the length is L

√
2Dτ .) Equation

(B.55) becomes

p(n)(x,v) =
∞

∑
m=0

C(n)
m (x)e−v2

Hm(v), x ∈ [0,L], (B.56)

with Hm satisfying the Hermite equation

d2Hm

dv2 −2v
d
dv

(Hm) =−2mHm. (B.57)

It follows that the function Fm(v) = e−v2
Hm(v) satisfies the eigenvalue equation

LvFm ≡
d2Fm

dv2 +2
d
dv

(vFm) =−2mFm, (B.58)

The leading-order Hermite polynomials are

H0(v) = 1, H1(v) = 2v, H2(v) = 4v2−2, H3(v) = 8v3−12v. (B.59)

Moreover, they satisfy the orthogonality condition∫
∞

−∞

Hn(v)Hm(v)e−v2
dv =

√
π2nn!δn,m, (B.60)

and the recursion relations

2vHm(v) = Hm+1(v)+2mHm−1(v), H ′m(v) = 2mHm−1(v). (B.61)

Substituting the eigenfunction expansion (B.56) into the 1D version of equation
(B.53), one obtains a differential equation for the coefficients of the form

d2C(n)
m

dx2 −2mC(n)
m =

d
dx

[
C(n−1)

m−1 +2(m+1)C(n−1)
m+1

]
. (B.62)

This is supplemented by boundary conditions at x = ±L, which are obtained by
expressing the spatial component of the steady-state flux as

Jx(x,v) =
∞

∑
n=0

ε
n

∑
m≥0

[
C(n−1)

m−1 (x)+2(m+1)C(n−1)
m+1 (x)− dC(n)

m (x)
dx

]
e−v2

Hm(v)

(B.63)
Setting Jx(x,v) = 0 at x =±L and using the orthogonality condition (B.60) implies
that
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C(n−1)

m−1 (x)+2(m+1)C(n−1)
m+1 (x)− dC(n)

m (x)
dx

}∣∣∣∣
x=±L

= 0. (B.64)

with C(n−1)
−1 ≡ 0. Finally, note that the coefficients C(0)

m are obtained by solving the
zeroth-order equation

∂ 2 p(0)

∂x2 +
∂ 2 p(0)

∂v2 +2
∂

∂v
(vp(0)) = 0, x > 0 (B.65a)

∂ p(0)(x,v)
∂x

∣∣∣∣∣
x=±L

= 0. (B.65b)

It follows that
C(0)

m (x) = Nδm,0, N =
1

2L
√

π
. (B.66)

Setting n = 1 in equation (B.62) implies that C(1)
m (x) =C(1)(x)δm,1 with

d2C(1)(x)
dx2 −2C(1)(x) = 0,

dC(1)(x)
dx

∣∣∣∣∣
x=±L

= N. (B.67)

Hence,

C(1)
m (x) =

N
√

2sinh(
√

2x)
2cosh(

√
2L)

δm,1. (B.68)

In order to determine the coefficients n ≥ 2 we have to impose the conservation
conditions ∫ L

0
C(n)

m (x)dx = 0. (B.69)

This gives, for example,

C(2)
0 (x) = N

[
cosh(

√
2x)

cosh(
√

2L)
− tanh(

√
2x)√

2L

]
. (B.70)

Combining the various results yields the leading order approximation

p(x,v)≈ e−v2

2L
√

π

[
1+ εH1(v)

√
2sinh(

√
2x)

2cosh(
√

2L)

+ ε
2

[
cosh(

√
2x)

cosh(
√

2L)
− tanh(

√
2x)√

2L
+C(2)

2 H2(v)

]]
, x ∈ [0,L], (B.71)

Finally, integrating with respect to v gives the marginal density

p(x)≈ 1
2L

[
1+ ε

2

[
cosh(

√
2x)

cosh(
√

2L)
− tanh(

√
2x)√

2L

]]
, x ∈ [0,L], (B.72)
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The resulting density profile consists of an enhancement of the density at either wall
combined with a depletion at the center of the domain.

Higher spatial dimensions

Analogous results hold for d > 1 [60]. For example, the function defined by Fm(v)=
e−v2

∏
d
i=1 Hmi(vi) satisfies the higher-dimensional eigenvalue equation

LvFm =∇2
vFm +2∇v · (vFm) =−2(m1 + . . .md)Fm. (B.73)

Moreover, the coefficients C(n)
m satisfy a Helmholtz-type equation of the form

∇2
xC(n)

m −2

(
d

∑
i=1

mi

)
C(n)

m =∇x ·w, (B.74)

with
w j =C(n−1)

m;m j−1 +2(m j +1)C(n−1)
m;m j+1 , (B.75)

and
C(n−1)

m;m j±1 =C(n−1)
m1,...,m j±1,...,md

. (B.76)

The corresponding boundary conditions for the coefficients C(n)
m (x) are determined

by setting J(x,v) = 0 for all x ∈ ∂Ω with

Jx(x,v) =
∞

∑
n=0

ε
n
∑
m
[w−∇xC(n)

m (x)]e−v2
d

∏
i=1

Hmi(vi), (B.77)

and using the orthogonality condition (B.60).
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